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INTRODUCTION
0.1. Motivation.

Regearch on the idea of random polygons formed by random lines
in the plane, the subject of the present thesis, was first motivated
in the literature by the physicist Goudsmit (1945)._ Concerned with
the positioning of particle tracks in early cloud-chamber experiments,
Goudsmit wanted to know if the distribution of these tracks was random.
He considered the general model of "a plane covere th straight
lines distributed at random in position and directjon". Observing that
these lines subdivide or tessellate the plane intio polygons, see Figure
0.1, he posed the pruv.lem of finding the probability distribution of
the areas of these fragments. Presumably, if he could measure the
areas of the polygons formed between the tracks, knowledge of these
distributions would pave the way for statistical investigations of the

actual positioning process.

Polygon

Figure 0.1.




Rather than attack the general problem, Goudsmit considered three
easier problems. He first solves the problem for the simplified case |
where lines are limited to two perpendicular directions. He next con-
siders the idealized problem on a sphere with random great circles
replacing lines, "in order to avoid difficulties with infinity". By
counting arguments he obtains the mean area, and observes that as the
diameter of the sphere is increased while the density of lines is held
constant, the tessellation characteristics approach those in the planar
case, Finally, Goudsmit finds the mean square area for polygons with
a clever ad hoc technique, reminiscent of the method of Crofton. For

‘ a comprehensive account of Goudsmit's work, including extensions and

generalizations, see Solomon (1978).




0.2. Recent Research

By far the most significant contributor to research on this prob-
lem has been R. E. Miles. Miles {1964) reports on the findings of his
(unpublished) Ph.D. dissertation in which he lists the essential pro-
perties of the models on which the present work is based. Modelling
random lines in the plane by homogeneous Poisson fields of lines (see
Section 1.1) [1], Miles investigates the distribution of other polygon
characteristics besides A, the area, such as N, the number of sides, S,
the perimeter, and D, the in-circle diameter [2]. Though he presents
(without proof) many impressive partial results and alludes to others,

he concludes by stating that

"The central open questions are clearly the determination
in the isotropic case of the distributions of N, S, and
(especially) A. .., Failing exact methods, a Monte Carlo
study would seem to offer an excellent way of approximating
this particular distribution and others."

Miles (1971) generalizes the problem to higher dimensions and establishes
the ergodic theory for future work. Miles (1973) derives the explicit
form of certain ergodic distributions, establishes relationships between
different polygon populations in the tessellation, and suggests stochastic
constructions for polygons similar in spirit to the one developed here
[3]. Miles (1974) develops some sampling theory pertinent to methods
used in the Monte Carlo study by Crain and Miles (1976).

Concise summaries and extensive bibliographies of recent work on
generalizations of this problem and related problems can be found in
Moran (1966, 1969), Little (1974), and Baddeley (1977). General random

line processes are discussed at length in Harding and Kendall (1974).




0.3. The Present Work

This dissertation develops a different point of view as to the
genesis of aggregates of polygons formed by Poisson fields of random
lines. When seen as resulting from a tessellation, the polygon aggre-
gate is a secondary formation in the sense that it is not determined
until the entire field of lines has been realized. However, the reali-
zation of each polygon is a random event in its own right. A sequential
stochastic point process, called the curling process, is constructed.

It 18 distinct from the Poisson line process and generates polygons one
at a time. In effect, this process can select an independent and iden-
tically distributed sample of polygons from the polygon aggregate in a
Poisson field of lines.

As well as lending insight intoc the dynamics of polygon formation,
the curling process is a fruitful tool for the investigation of the dis-
tributions of polygon characteristics. In particular, it yields a high
speed computer simulation technique for Monte Carlo studies of these
characteristics. Furthermore, the curling process is specified in the
general translation invariant context. Hence, it can be used to explore
anisotropic alternatives in addition to the isotropic (rotationally
invariant) case.

The outline of this work is as follows. Chapter 1 defines the
Poisson line processes that are used to ;;dcl random lines in the plane.
Basic results which are required to develop the curling process are

proved there. Chapter 2 defines the curling process and develops its




distributional characteristics. Chapter 3 contains derivations of the

polygon distributions from the curling process and explores methods for

deriving distributions of polygon characteristics. It also contains
definitions of useful families of anisotropic alternatives to isotropy.
Chapter 4 contains a Monte Carlo study of the distributions of polygon
characteristics over a wide range of Poiseon line distributions. Therein

are established some theorems which enable the use of a high speed ver-

sion of the curling process for simulation.




CHAPTER 1
POISSON LINE PROCESSES

1.1. Poisson Fields of lines.

We parametrize each line in the plane by (p,0) where pe (~»,®)
is the (signed) perpendicular distance of the line from the origin O,
and 6¢€ [0,7) [4] is the northeast angle that this line makes

with the horizontal, see Figure 1.1.

P
0 h
orizontal
Figure 1.1.
H A set of linesg
(1.1) L= {(pi.ei) , 1=0,%1,%2,...}
4 is sdid to be a Poisson field of lines if
(1.2) 1) -0 g 00 & p-1<p°<p1<p2<..o<o is

a realization of a linear Poisson process of

constant intensity <t > 0. (See the appendix)

for definitions of the Poisson process).




(1.3) 11) {e i} are realizations of independent and identically
distributed random variables with arbitrary distribu-
tion G(8), 6 € [0,7). Furthermore the angles {911

are independent of the distances {P 1}.

A Poisson line process is that random process whose realization is

a Poisson field of lines.
The (p,08) parametrization makes clear the bijective correspon-

dence between lines in 1R2 and the cylinder
1.4) c= {(p,8): pe(~w®), Be[O,m} .

Equivalently we can define a Poisson line process to be a two-dimensional
Poisson point process N on (. More precisely, N 1is a non-negative
integer-valued random Borel measure on C [5] which satisfies for

disjoint Borel Al,...,Ak on C and some T > O,

-'m(A ) n,
(1.5) rr( n(m)-n)) (m(a)) a1
i=1
where
(1.6) m(A) = I dp dG(8) . [6]
A

(For consistency with (1.3) we choose G suitably normalized to be a

probability distribution.)




——

It should be pointed out that there are several equivalent ways
of generating a Poisson field of lines. We shall however, regard the
process N on C defined by (1.5) and (1.6) as our starting point
and use it to prove many of the basic results in Section 1.2.

We now proceed to show how m(A) in (1.6) arises solely from
invariance considerations. Let 8* be the group of translations of
Rz. Let J be the group of motions on C induced by 8'*. For the
following results it will be convenient to congider the angle ¢ that

the perpendicular from O to a line makes with the origin. See

Figure 1.2.

A A
0 ¢]

Figure 1.2,

In terms of 6 we have

] +% for 6 ¢ [0, D)
(1.7) ¢ =
8-7 foroe [-;-,ir) .

The relationghip between (p,8) and the cartesian coordinates (x,y)

of its points in 1{2 is then

(1.8) xcos $+ysinp-p=0.




et

.

*
J 1is clearly generated by motions of the form

* * *

T o &t (X3 > (x+x, y+y ), for (x",y*)em2 R

x,y)
This motion sends (1.8) into

* *
xcos $+ysinéd - (p-xcos ¢ -ysiné) =0.

Thus J 1s generated by motions of the form
(.9) T , ,: (p,6) (p-x*cos ¢ - y*sin ¢, 8), for (x*,y*)t:ll2 .

(x ,y)

with ¢ related to 8 by (1.7). It is interesting to note that (1.9)
is a shear and not a translation of (C. In fact, J contains no trans-

lations.

Theorem 1.1.1. Every positive Borel measure m on (C invariant under

3 4is expressible, up to positive factors, in the form (1.6).

Proof. We shall prove the theorem for the case where m 1is expressible

in the form
(1.10) m(A) = I £(p,6) dp 4o
A

for all Borel A on (.

If m i1is invarisnt under J we have from (1.9)




(1.11) ) =nT , o A  Vx,y)em
(x,y)
- where
(1.12) T , o A={(p,0): T5, . (p.,0) €A},
(x ,y) (x ,y)

But (1.10), (1.11) and (1.12) imply that ¥ (x ,y )€ R

I £(p,9) dp a0 = f £(p,0) dp a0
A T o s A
x,y)

- I f(p—x*cos¢- y*aintb ,0)dp 4@
A
* * ' * &
->  £(p,0) = f(p-xcosd-y sin ¢, 0)  Vix ,y)eR.
Hence, £(p,0) = g(0) say, is a function of 6 only and
n(A) = I g(@) dp d0 = I dp ac(®) . |l
A A
Theorem 1.1.1 illustrates how (p,8) (or (p,4)) is a natural
parametrization of lines in the plane with respect to translation
invariant measures.
We say that a line process is homogeneous if the distribution of

the process is translation invariant, i.e. the distribution of the

*®
process is invariant under the actions of J .

10
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Theorem 1.1.2. The Poisson line process is homogeneous iff (1.6) holds
for the characterizing point process N defined by (1.5).

Proof. If the Poisson line process is homogeneous, then X is invariant
on C under J. But then so is EN(A) = tm(A) invariant under J for
all A on (C. It follows from Theorem 1.1l.1 that for suitably chosen
1>0, (1.6) holds.

The reverse implication follows directly from the demonstrated

invariance of m(A) = IA dp dG(6) derived in Theorea 1.1.1. I

The special case of homogeneity of most interest is that vhere
the group of motions is enlarged to include rotations. We denote this
enlarged group by m*, and the group of induced motions on C by I
Davidson (1974) showed that i on C 1s generated by motions of the

form

Rﬁ): (P:e) - (P’M) » for w € [09“)
and

84t (p,8) > (p+cos ¢,0) , for s € R

analogous to (1.9).

We also have the well known analogue of Theorem 1.1.1l.

Theorem 1.1.3. (Crofton (1885), Santalo (1953)). There is, up to

positive factors, a unique positive Borel measure on C invariant
under M, and this measure (which we shall denote by ‘I)’ is of

the form




(1.13) -I(A) -% L dp dé for all Borel A on C.

(The factor % appears in (1.13) for consistency with the definition

of G in (1.3) as a probability distribution.)

We say that a line process is homogeneous and isotropic if the
process is translation and rotation invariant, i.e. the distribution
of the process is invariant under the actions of ln*. We have the
following analogue of Theorem 1.1.2 which is proved with the game

argument replacing Theorem 1.1.1 by Theorem 1.1.3.

Theorem 1.1.4. The Poisson line process is homogeneous and isotropic

1ff (1.13) holds for the characterizing point process N defined by
(1.5)0

Throughout the sequel we shall only concern ourselves with homo-
geneous Poisson line processes. We call those line processes which
are not isotropic, anisotropic. By a slight abuse of terminology,
we will refer to isotropic and anisotropic Poisson fields of lines

when the line process generating them has those properties.

12




1.2. The Basic Theorems.

In this section we derive the probability distributions of certain
types of events in a Poisson field of lines. These are known results

which can be derived in a variety of ways. We use the following idea.

By expressing each event as the realization of points in a particular
set A on C our results follow directly from (1.5) once we have
found m(A) or n, (a).

We shall find it convenient to allow 6, the orientation angle,
to be in the range [-w,27]. ‘It is to be understood that such a 9
refers to a line with orientation 0 mod m. We generalize the

distribution G(8) by
(1.14) dG(6) = dG(8 mod m) .

The following theorems concern intersections of a Poisson field

with a line. Let 20 be an arbitrary line in Rz with orientation

eo(e[O,'lr)). For definiteness, we define the angle of intersection of
another line with £

by = 0-8 wvhere lines are now parametrized

0 o’
by (p,9) with 90 <0< 90 + 7 understood in the sense above.

Fix a segment C of length ¢ on !'0 and define

(1.15)  Ag(@) = {(p,8): the line (p,0) intersects C and 0 < (8-8) < w} .

13




(1.16) I(Ac(u)) =c

8ot |
I s1n(6-8) 4G(6) |

)

Proof. By translation invariance, we may locate C with the souther-

most end at the origin, O.

gecting C at length & from 0. See Figure 1.3.

Consider an arbitrary line (p,0) inter-

Reparametrizing (p,8) by (s,0), we have

p=s l:ln(e-eo) => dp dG(0) = .m(e-eo)d. daG(o) .

Hence,

n(A W) = [ dp dG(6) |

A W)

°+ ¢
- r NI un(o-eo)d- dc(e)
Oo 0

00-0'0 ;
- cI l!.n(O-Oo) 4ac(e) . I |
00 !

14




In the isotropic case dG(8) = % do6, and

(1.17) @) =& [0 atn(e-8 a8 = £
. lIAcN)) v g s 0 = o-mede .
0

The above results are the building blocks of the following theorems.

Theorem 1.2.2. Points of intersection of £ with "0 are realizations

of a linear Poisson process of constant intemnsity rueo) vhere

8, +m
(1.18) A8 = J 0 s1n(8-8)) dG(6) = I" |s1n(e-8 ) [ac(e) .
0 0

The result holds conditionally for !’0 L.

Proof. It follows from Theorem 1.2.1 that for any set of intervals

cl.....cn of lengths CyoeecsCp
(1.19) nlhg (M) = A6)e,

(1.5) implies that intersections of £ with ci have a Poisson dis-

tribution with mean TA(Oo)ci. Furthermore, if the ci'l are disjoint,
intersections with C]_,....cu are mutually independent. This is suffi-
cient to characterize the linear Poisson process along "0 of (copstant)

intensity TA(O (see characterization (A.1l) in the appendix).

o
Finally, the result holds conditionally on Lo € & because "0

was arbitrary. ||

15




Por isotropic £, Theorem 1.2.2 holds with

(1.20) A0y = % ’

since from (1.17)

ey 2c1
(1.21) llI(Aci('ll’)) - r; sin 0 dO = -

Theorem 1.2.3. In Theorem 1.2.2, the angles associated with points of

intersection are independent and identically distributed with common

\

distribution

8o -1 Go-m
(1.22) H (o) = A () JO s:l.n(O-Oo) d46(0)
0

for we(0,m). These angles are also independent of the Pi" associsted

with the intersecting lines.

Proof. Consider again the interval C on !'0'

Conditional on n intersections with C, i.e. N(Ac(w)) =n, let
{(pi.ei)}:_l denote the (rzindexed) parametriszations of the intersecting
lines.

It follows from (1.5) that [7]
{(P,0,) [N(A(m)) =0},
are independent and identically distributed with common density
@)L dp d6(®) on (p,0) €AW . [g]

Thus, since C 1is arbitrary,

16

e et b s ; ; -

e i+ e e oAb < S £ Bt o A o @ S ek #niae




6
R Ow) = P{(P,0) € Ao(®) [N(AL(w)) >0}

-1
= (m(A.(T))) I dp dG(6)
e Ac(w)

n(Ac (@)

- miAc(‘N))

90-0-0)
c [ sm(e-eo) dGc (o)
8

c MBO)
by (1.16) and (1.18).

Independence of angles among disjoint intervals is immediate from
(1.5). The independence of the angles from the pi's is immediate

from the absence of p, in (1.22). |

Results in the isotropic case are again much simpler where Theorem
1.2.3 holds with

e -1 0\t
0 2 1 0

1 (]
8in(6-6_)d6 = = I sin 6 d6
0 2

60 0

independent of eo as we should expect.
It follows immediately from (1.22) that the density of the

angles of lines intersecting "'O is
(1.24) "eleo(e) = (A8 " atn(e-0,) lac(o) .

Using the convention (1.14), the support of (1.23) can be any interval

of length .,

17




In the isotropic case (1.23) 1s just

(1.25) dr,(8) = % sin 6 46 .

Theorem 1.2.4. Consider T an arbitrary triangle with sides Tl'TZ’T3
of lengths "1"2"3 and orientations 01,62,93 respectively. Then
the number of intersections of £ with T has a Poisson distribution

with mean

(1.26) 7 (6A(8)) +£,0(8,) +£,0(0,)) .

The number of intersections of £ with T which do not intergect side

'1'3 has a Poisson distribution with mean
T
(1.27) 2 (:lx(el) + :zx(ez) - t3k(93)) .
Proof. Let
B= {(p,8): (p,9) intersects T}
and

B = {(p,8): (p,0) intersects T but not Ty} .

Since each line intersecting T intersects two sides, we have in the

notation of (1.15)

3
2a(s) - n(A, (M)
121 “'1

18




and
() =ty (M) +ulhy (1) - alay M) .
But as in (1.19),
IB(Ar () = tiA(Oi) .
i
Hence the desired assertions follow from (1.5). Il
We remark that by (1.20), Theorem 1.2.4 holds in the isotropic case
with (1.26) replaced by

(1.28) -} (b, +t, +ty)

and (1.27) replaced by
T
(1.29) ¥ (cl +t, - ty) .

The next result involves the distributions of angles of inter-
sections of members of £. As opposed to our use of integral geometry
to evaluate the measure of sets above, we find a conditional probability

argument simpler now.

Theorem 1.2.5. Angles of intersection between members of £ have

the marginal distribution

(1.30) H(w) = A~} I |31n(91-6°)| dG(8,) de(o

0< 8,8, <

o

ele [0,%)
eoe {o,w)

19
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where

(1.31) A= IZ 1(90) dG(Go)

and w € (0,m).

Proof. By unconditioning (i.e. integrating over the range of 90) the

regult of Theorem 1.2.3, we obtain

H(w) = U sin(0,-6.) dG(8,) dG(e)
028y <8,<0,+7< 2k

which is identical with (1.30) using (1.14). A 1s then the correct
normalizing constant. ||

Notice that in the isotropic case, since (1.23) does not depend

on 90, ve have immediately that
(V]

(1.32) H(w) -% J ein 6 48 for we (0,m) .
0

It follows immediately from (1.22) that the joint density of the

angles of lines at intersection points is
-1
(1.33) dH(8,,8,) = A lsm(el-eo)ldc(el)dc(eo) .
Using (1.14), the support of (1.33) is the direct product of any two

intervals, each of lengtn .

20




In the isotropic case (1.33) 1is just
1
(1.34) dH( ,0,) = 57 |etn(e,-0) |8, a0

The result (1.34) is somewhat counterintuitive since lines in an
isotropic field would seem to meet at uniformly distributed angles.
(1.34) reflects the fact that angles far from perpendicular are 'shifted'

out towards ‘infinity'.

21
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CHAPTER 2
THE CURLING PROCESS

BEvery realization of a Poisson line process subdivides the plane
into a set of non-overlapping polygons. Borrowing from the notation of
Miles (1973), we denote the aggregate of polygons from a single reali-
zation by pP*. pP* refers to the general case; we use the terms iso-
tropic P* and anisotropic P* to refer to the polygon aggregate in
the isotropic and anisotropic cases, respectively. In this chapter we
develop a sequential stochastic process, which we shall hereafter call
the curling process, capable of generating an independent and identi-
cally distributed sample of polygons from the population of polygons
equivalent to any ©* up to translation. [9] The reduction of members
of pP* by invariance is an advantage since virtually all of the polygon
characteristics of interest are invariant under the groups of motion

considered.

2.1. Which Distributions?

As is discussed in the introduction, of substantial interest to
research workers in this area, has been the distributional properties
of certain characteristics of members of %, principally N, the
number of sides, S, the perimeter, and A, the area. Two questions
come to mind as to what is meant by the distribution of characteris-
tics here. Namely, how does one define a distribution for a single
realization P*, and 1s the distribution the same for all @*? The
prior work of Miles (1964, 1973) answers these questions. By exploit-

ing the homogeneity of the Poisson line process Miles is able to
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demonstrate the existence of ergodic distributions as the limits of

empirical distributions of polygons contained in a disc of radius q

as q *=. These ergodic distributions are the same for all pP* (w.p.l).

Miles even obtains explicit forms for certain characteristics, though
not for the ones mentioned.

The distribution of polygons obtained by the curling process
turns out to be exactly the ergodic distribution obtained by Miles
though we do not base our derivation on ergodic results. All of the
probabilistic results in Section 1.2 are based on the population of
all realizations of a Poisson line process. The curling process is
derived from these results and hence is based on the distribution of
of all polygons obtained from all P*'s, We shall derote this super-
population by pP**, However, the eventual agreement with Miles'
results shows that our results apply equally well to the population

of polygons in a single @*.
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2.2. Notation.

Consider an arbitrary N-sided convex polygon. Label by Oo.

the angle that the right side of the southermmost vertex (if there

are two choogse the one on the left), makes with the horizontal.
Starting from this vertex label consecutively, in clockwise direc-
tion, the side lengths zl,zz....,zn. and the angles that thesge
gsides make with the horizontal 61,92....,9N. Figure 2.1 is an
example of this labeling for N = 5.

horizontal

Figure 2.1. The notation for a 5-sided polygon

We denote the lines coinciding with zl,zz,...,zN by 21,22,...,£N
and the vertices corresponding to 61,62,...,9N by Vl.Vz,...,Vh. It

will be convenient to define zo - zu. for notational ease let

(n)
(2.1) e - (90991,21,92.22. [ .’zﬂ-l’en)
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(202) Z(n) L e(n)’zn) .
Since
| ] )
(2.3) 6. =6 -1, 2, 8in 0, = 0 , Z,cos O, =0.
N Y0 ! 1 2 1 1
(N-1)
N and © are sufficient to specify any polygon in pi* up
to translation. For isotropic pP**, we will force 60 2 0, in which
case N and 601 are gsufficient to specify a polygom up to
5 translation and rotation.

We denote the perimeter by S where

N
(2.4) s= 12,
i=1
which can be reduced to a function of O(N.l) by (2.3).
If we also consider the polygon to be located in the Cartesian

plane with the origin located at v we find the Cartesian coordi-

1’
nates of the vertices useful. These may be related to the 6's and
Z's by
i i
(Xg,Y,) = (1.2.1 z, cos 8, , 121 Z, sin 6,)
(2.5)

(XO.YO) = (0,0) .

We denote the area by A. By considering successive areas of triangles
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and quadrilaterals formed by consecutive sides over the x-axis we

obtain the following convenient expression for A. ;

)
(2.6) A 2 (xi-xi_l)(Yiﬁri_l) .
{=1
This can be related to the O's and 2's by (2.5), and further reduced
by (2.3).
In the sequel we shall be treating much of the above notation

as representing random variables.

2.3. The Curling Process Conceptually

We now proceed to describe very generally the curling process.
Each realization of the curling process is an infinite alternating
sequence of angles and side lengths, As will be seen, from each of
these realizations we can extract one polygon, so that polygons are
a by-product of the curling process just as they are a by-product of
the line process. However, although our construction of the curling

process is based on the properties of the Poisaon line process derived

in Section 1.2, it is important to regard the two processes as separate

entities.
In Figure 2.2 we heuristically portray the sequentisl realization

of the curling process. (Angle selection is indicated by the dashed
lines, and side lengths by the solid lines). The polygon to be extracted
from the process is distinguished from the curling process by the bold

outline at the end.
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As Figure 2.2 demonstrates, the polygon and the curling process

coincide initially. Becauge of this coincidence we use essentially
the same notation for each. That is, the curling process is denoted

by the same sequence

; 60091021092922093’23""

corresponding to the polygon notation developed in Section 2.2. It

should be clear from the context which coordinates we are referring

f ‘ to. However, when ambiguity might arise, or it is necessary to

distinguish between the two, we will put '~' over the symbol when

expressly referring to the curling processes. For «xample, given

that the polygon to be extracted as N sides, one can conclude from
Figure 2.2 that .in-l is the first coordinate of the curling process

which might depart from the corresponding coordinate zu_l of the

polygon formed. Specifically, we will define N (or more precisely
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N-1) as a stopping time 30 that the first 2N-2 coordinates of the
curling process coincide with the first 2N-2 coordinates of the
polygon, 0™ 1) since the remaining polygon coordinates are deter-
mined through (2.3), the polygon distribution is obtained from the
distribution of the first 2N-1 coordinates of the curling process.

Just as in Figure 2.2, our development and specification of the
curling process will be sequential. This point of view 1s simpler,
clearer, and greatly facilitates Monte Carlo simulation. As the
process is highly dependent, we condition on the past at each step
using conventional conditional probablity arguments. In particular,
we regard the past as a realized gequence pe::aining to the selection
of a polygon. The joint distribution of the curling process is obtained
as the product of the derived conditional probabilities. The stopping
time N {s determined by the first side length to cross zo. Thus, the
polygon coinciding with the curling process has as its last vertex 'L
the intersection of the curling process with 20. Though the curling
process conceptually continues forever, we will not concern ourselves
with its behavior beyond this stopping time.

In :he remainder of this chapter we develop the sequential and
joint distributional properties of the curling process. The joint
distribution yields expressions concerning the distributions
of characteristics of members of p** which we explore in Chapter 3.
The sequential distributions are the basis of the Monte Carlo simula-
tion studies in Chapter 4. There we derive some results conceraing
simulation of these sequential distributions which are equivalent yet
faster computationally. In this sense the final curling process we

use is defined in that chapter.
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2.4. The Joint Distritution of 6, and 91 - Picking a Polygon Randomly.

9(1) - (00,91) deternines the orientation and size of ths southern-
most angle of a polygon. The following proposition apparently first
observed by M. Stone {Miles (1964)), links the distribution of this
angle to the distribution of certain intersection angles, and ensbles

us to sample a member of p*%,

Proposition. In any reslization of a line process, there exists a
bijective map between the points of intezsection of lines and members

of the polygon aggregate induced.

Proof. Associate with each polygon, that intersection point corres-

ponding to the vertex which is southermmost. If there are two, choose
the one on the left. This choice is unique. Similarly, associate with
each intersection point that polygon which lies entirely above it. If

there are two, choose the one on the right. This choice is unique. "

(Note that the choice of south is arbitrary here).

Hence to sample a polygon from @**, we need only sample southern-
moat vertices which, by the proposition, correspond to sampling northern-
most angles at intersection points. It follows that the joint distribution

of O, and 91 can be obtained from (1.32) by a symmetry argument as

0

2
2.7) 6790.91(90.91) -5 sin(ﬁl-eo) dG(el) dG(Go)

for 0<8,<8 <
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As ve are interested in specifying the curling process sequen-
tially, we need the marginal distribution of eo which can be

computed (in principle) for specific instances of G from

2
(2.8) daF (6g) = § do(6y) - f: sin(6-8) dG(6) ,
0

for 90 e [O,m).

Next, given 60. 8, 1is selected from the conditional density

1

-1
(2.9) dl’elleo(el) - [J: -m(e-eu) dG(e):l . -m(el-eo) dG(Bl)
0

for 0190<91_<_1r.

In the isotropic case, the actual value of eo will be unimportant
because of the rotational invariance. In this case we begin the curling
process with the angle (91-60). The marginal distribution of
0= (91-00) for isotropic p** {g derived from (2.7) as (A = 2n

from (1.34))

(n-0)
0

-8

1
dF(0) = 7 sin O do I deo - sin € 40 .

»

Thus, for isotropic pP**, without loss of generality we assume 60 0

and begin the curling process by selecting 61 from the density

-0

1
(2.10) dl’el(al) - sin 01 del

for 0<6, <7,




i
It is interesting to compare this choice of 91 with the native ‘

guess dr, (91) = %’- sin 6, d01. This is tantamount to choosing an
1l

arbitrary vertex in the plane. The sample of polygons so chosen will
be weighted by the mumber of vertices. This particular aggregate of

polygons are the N-polygons described by Miles (1973).

- 5
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2.5. The Conditional Distribution for General (enlz(“'l)).

From (1.26) we know that the conditional demsity of (9 |z*D)

is proportional to

d (On)¢[sin(0n-0n_1)IdG(Gn) .

Fé lz(n-l)
n

However, the range of support is tricky. (Gn|z(n-1)) ig the angle

of Ln, the line on which Z , the next side of the polygon, will

(n-1)

lie. The information conditioned on is that =z is already part

(n-l) )

of the polygon. This restricts the range of (Gnlz to be that

where Zn does not cut back through the polygon.

Define dn- to be the diagonal from vy to v, and a to

1 n-1

be the angle from dn-l to the horizontal at v See Figure 2.3.

v horizontal

Figure 2.3.
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The range of support is then

(2.11) o, ¢ (a ;.6 ) [10].

The density on this range is

(2.12) dFe lz(n‘l) (en) - dFen'ene (an_l’en-l) (Bn)
n
= (atz. .0 V) Laine -6 )dac(o )
AL n-1 n n
where
(2.13) (z. .,0" Dy . o sin(®_ _-8) 4G(9)
o WV2pre o n-1
n-1
and
-1 7
(2.14) o = tan 1n_ T
n x
n
where (xn.yn) are the Cartesian coordinates of Vol given by
(2.5).
(Note:

We have written q as a function of two arguuents for convenience

in our use of it later).
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2.6. The Conditional Distribution for General (znle(“‘l’).

We now derive the conditional distribution of the side lengths
in the curling process. We begin with the simple but illuminating case
of (lee(l)). By Theorem 1.2.2 and characterization (A.2) (appendix),
the distances between points of intersections along a line in ¢, are
independent and identically exponentially distributed with parameter

TA(6), where 6 1s the orientation of the line. Thus, the distribu~

tion of zlle(“'l’ is
(2.15) dPZIle(l)(zl)-'tk(el) exp{-TA(el)zl}dz1
where z, € [0,°) and X(Gl) is given by (1.18).

For the more complicated general case, consider the triangle T

with side lengths dn-l’ z and d with angle orientation a1 Bn

and & respectively. See Figure 2.4,

horizontal

Figure 2.4.

34




By Theorem 1.2.4, the number of lines hitting T but not side

dn-l has a Poisson distribution with mean

3 (22(8) + A (@) -d_ ;M 1))

from (1.27) and using (1.18) and (2.14)

Hence, (see Snyder (1975), Chapter 2), the number of hits along
ln, the line coincident with 2z, not crossing dn_1 is a non-
homogeneous (linear) Poisson process with intensity ¢(z) where

¢(z) satisfies

z
(2.16) % za(8) +dA(a) -d _,A(a _,)] = [o ¢(z)dz .
This implies
T ad) (a
(2.17) 6(z) = E-IA(en) + ——5;—1 ’

since d and o are functions of z, and di(a) evaluated at z = 0
1s equal to d__,A(a_ _,).
It now follows immediately from the above, (see Snyder (1975)),
(
that (znls n)), the distance until a first hit through & not

intersecting dn-l’ has density

z
n
(2.18) dF |e(n)(z“) = ¢(zn)exp{- Io ¢(z)dz}dzn

Zn

T 3d_A(6 ) T
=5 A () +T] exp{- 5 [z A(8) +d A(a)) -d _,A(a _,))de

with support on zns {0,°).
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We now derive a useful and surprising fact, namely that

ad A(6 )
T n (n)
(2.19) $(z) = 3 A () + “azn ] = 1q(,07) ,

where q(zn,e(“)) is defined in (2.13) as the measure of the set of
lines in R2 crossing R'n at z vhich do not cross dn—l' (2.19)
says that the intensity of the nonhomogeneous Poisson process of hits

along R.n is proportional to q(zn.G(n)) the measure of ‘'available

lines at z,'.
We now proceed to derive (2.19). We begin with the trigonometric

reduction

-1 yn
sin(e-an) = gin(6-tan (x—) + 1)
n

N/

= -gin(0-tan 1(x—“-))
n

yncose -xns:ln )

2,1/2 i
n

2
(xn+y

2
n

1/2

which combined with dn - (x121+y

) yields

U.n-HT
(2.20) dnl(en) = dn J sin(e-an) dG(e)

)
n

n
- I“ (yncose -xnsin 0) 4c(e)
By the chain rule,
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9d A(a 2d A(x % 9d A(a ) 9 3d A (a °
n ( n) n n) n n_'n In n ( n) *n
- ] + ——————— ) t—— + ——————— G S— .
oz 3a oz dy 9z ax oz
n n n n n n n

Evaluating the partial derivatives of dnk(zn) above via (2.20), we

have

+
9 n 3
— |a (yncos e - xnsin 0)dG(8) aan r; Iyncos 6 - xnsin BIdG(e)
n

=0
3 n'HI’ Gn'HT
F (yncos 0 - xnsin 0)dG(0) = J cos 6 dG(8)
n ‘o o
n n
3 an-Hr n'HT
— (y_cos 68 - x_sin 0)dG(6) = sin 6 dG(8)
n Ja n n o
n n

where the last two partials follow by Leibnitz's rule. From (2.5) we

have
ayn 3
aT--sinen, 3Tcosen.

Combining the above we obtain

Bdnk (u.n) } Ian-Hr

az
n

(sin encos - cos ensin 0)dG(9)

[+
n

1T
- r“ sin(8 _-6) dG(8) .

[+]
n
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ad_A(a )
o(2) = 3 (A8 + “a,n" ]

L
N

0
-n

anﬂ Gn
[-I sin(en-e)dc(e) + I 8in(6 -6)dG(6)]
o +1 a n

N~

)
(3 J " sin(8_-6)dG(8)]

(s}
n

N|A

atz_,0) ,

|
-

which verifies (2.19).
Combining (2.18) with (2.19) we obtain another useful expression

for the density of (znle(“)), namely

l (2.21) dF ya) = T ale 0™ expl= T L2 A ) +a M@ 4, A )]de,

z Ie(n
n

(2.21) fits nicely with the angle density (2.12) to provide, as we will

see, a substantially simplified joint density.
We rewrite (2.18) one more way which will be extremely useful in
deriving fast algorithms for simulating the curling process in Chapter

4, By (2.18) and (2.19) again,

(2.22) ar Ie(“)('“) -1 q(an,e(n))uxp{—T Qs ,0™)das_
n
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0 4w +r ‘
[J n sin(6-6_)dGc(6) + r“ sin(6_-6)dc(9)) |
a




where

(2.23)

We remind the reader that the support of (2.21) and (2.22) is

[0,).

2
acz,,6%) - Io“ q(z,0 ™) .
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(n)

2.7. The Joint Density of Z - The Curling Process.

-We summarize and conclude this chapter with the joint density

of Z(n). This is obtained simply as the product of the conditional

densities

(n)
dF '™y = aF (0,.,0,) - dF (z,) - dF (.)

coe dF

elz

(a-1) ) ° ar o@D (z) .
n n

Summarizing the previous results, we have from (2.7)

2
(2.24) dFeo.el(eo’el) = 3 8in(6,-6) d6(6,) dG(8,)

om 0<6,<8, T,
from (2.12)

(2.25) dF 0 = (alz. .6 D)™ sin(e_ .~0.) dc(s.)
: o z(ﬂ-l) n LA S T 8 n-1 "n n
n

o a ;<8 <8 ;.

and from (2.21)

(2.26) dr (z) =1 q(z .e(n))
znle(“) n n

+ exp{- 7 [x A8 ) +d Aay) -4 ;M@ )]}ds
on 0<g <= ,
- n
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Thus, i

)y . _2 (1
(2.27) drz(n)(' )=-% (11:1 sin(6,-6, ,))

n
. @ expl- %.[(121 z,A(8,)) + d Ao} :

a0 (T dccei»(ﬁ dz,)
" 1=0 f=1

on the set

(2.28) ®: o< <o <,

o <9, <6 1i=2,...o0n,

i-1 i i-1

0<z, <o j=1,...,n} .

The support (2.28) can be expressed in different useful ways as will

be seen in Chapter 3.




CHAPTER 3
POLYGON DISTRIBUTIONS

In this chapter we take the constructed curling process, and use
it to derive expressions for the distribution of polygon charaéteris-
tics. As was described in Section 2.3, we use a stopping time to
extract polygons from the curling process. This procedure turns out
to be mathematically convenient as well as efficient for the simula-
tions in Chapter 4. We also define some general families of anisotropic
distributions which are particularly appropriate for the general distri-
butional forms obtained. Finally, in the last section, we suggest some
alternative approaches to obtaining distributional information from the

curling process.

3.1, The Polygon Formed by the Curling Process.

(Here and in the rest of this chapter we shall find it necessary
to distinguish in our notation between the curling process and the
polygon formed. We shall do so by placing a '~' over the curling
process coordinates as described in Section 2.4.)

Selecting 61 and eo at the beginning of the curling process

is tantamount to selecting 21 and 20 = £ the two lines coinci-

N’

dent with the first and last edges, and Zys of the polygon sampled.

b6 |

However, whereas the curling process ‘'travels' over ll’ there is
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no edge of the curling process on "0' The polygon ‘'formed' by the
curling process has as its boundary the curling process realization
up to the first intersection with "’0' together with the length along
i !.0 from v; to this intergection point. This point becomes the last
vertex of the polygon v., and the last side of the polygon Zys

N
becomes this length along 20 from v, to vy. See Figure 3.1.

| P f\ horizontal

Figure 3.1,




3.2. The Event {N=n}.

N, the number of sides of the polygon formed, is one more than

the index of the first side length of the curling process to cross

2.0. That is,
n-1 - o~
(3.1) N = inf{n: 121 z, nin(61490) <0} .

Precisely, N-1 1is a stopping time of the curling process (in the
sequence {(en,zn)} of angle and side pairs).

The event {N»n} can be usefully expressed as

(3.2) {N=n} = {N> n-1 and En-l crosses 20}

= {N>n-1 and ©
n—

where we define

R
(3.3) U = -sec(®,0) ] Z

ain(é - ) .
{=1 i 0

i

The requirement that én-l < 50 in (3.2) 1s necessary and sufficient

~

for Zn_1 to cross lo when zn-l > Un—l'

We can use (3.2) and the joint density (2.27) to find, in principle,
the distribution of N by

(3.4) P{N=n} = [ (v-1)y |

4 dFi(n_l)(z
{Nen}
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This integration, as we will see, is in most cases, prohibitively

difficult to carry out.

' We now proceed to describe each set {N=n} in terms of an explicit

z(n—l) 2n-1)

range of (actually R where the integration in (3.4)

might be carried out. For m = 2,...,n-1, define
() _ (o), .
(3.5) D, {6 8y <6, <8, ;s 0<z <= for i=1,...,m-1

and «

m_1<6m<90, 0£2m<um

and 0, )< 8,<6, , 0< 2y <uy for je=mtl,...,n-1
and o , < 9n< en-l} ,

and

@.6) ™™o <6 <0, 0cz <o for 1=1,...,n1
and @ 4 < Bn <eo} .

and

3.7 »@D LY 1),

m=2
(Note: a, is as in (2.14) and u, corresponds to ﬁk in (3.3)).
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Thus

(3.8) {N=n} = n(n-l) n {z(n-l): v o1 <z < o} o

(3.8) follows from (3.2) as can be verified by induction.

An immediate observation from this section is the result that the

distribution of N 1is in general invariant under changes in the intensity

parameter T. This follows by observing that transforming 2z i = T2

i=1,...,n in (2.27) yields a density not depending on T. Further~
more, the sets {N=n} are unchanged by such a transformation as can
P be seen by examination of (3.5) and (3.6). The result then follows
from (3.4).

We might remark here about our future notaitional use of N as an
index. Any variable indexed by N is defined to be that variable ;

indexed by n on the set {N=n}. For example,

(3.9) o(™-1) | E o™ . 1{Nan} .
n=3
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3.3. The Joint Density of Z(N) of Polygons.

It vas pointed out in Section 2.2 that N and o©N-D) specify
a polygon up to translation since the last three polygon coordinates

zN-l’ GN and ZN are determined by G(N-l) via the relationships

in (2.3). Hence, the distribution of O(N-l)

L)

is equivalent to that
of Z'°. We now derive the distribution of G(N-l) from the curling
process.

Figure 3.1 illustrates quite clearly that the curling process
coordinates and the polygon coordinates are identical until the

curling process crosses 20, at which point they depart. More

precisely we have,

5(N-1) (N-1) 5
(3.10) 0 =0 but 2z, , ¢ 2y Wep.1)

By (3.9) and (3.10), we can specify the density of o-1)

the densities of 5(n-1)

by
on the sets {N=n}. Expressing {N=n}
by (3.8) we obtain

(n-1), (n-1)
(3.11) dFe(N_l) (8 ) J dFi @-1) )

Yn-1 < Zh-1 <@

with support on D(n-l).

By (2.19) and (2.27) the right side of (3.11) is
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n-1 n-2

(3.12) - — (I sin(0,- ))r -
i=1
n-1 n-2
. exp{-" 2 2, A (0 )}< n dc(e ))(11!1 dz,)

9d_ Ao ,)
. I n-1"""n-1
E 2 [X(Bn_l) g

n-1

nN=-

« expl- 3 [z, M0 1)) +d_ Ao )]}z, .

The definite integral on the right side of (3.12) is evaluated as

T
(3.13) —exp({- 3 [z__1A(8_ ) +d__;( )]}l

Ya-1

= expl- 5 [z 1A (8 ;) +2 A (01}
since

(3.14) on {N=n}, u d =z and o , =06

n-1 " ®N-1°

Combining (3.11)-(3.13), we have on {N=n}

(3.15) dr 0@, . Y (“1-11 in(8,-6, ;) n-2
) o(N-1) Yt 1-177
n=1 n-2
. axp{- 7 { 2 A0 de(8,))( N dz,)
1=0 i=1
with support on pla-1)
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We now exteud (3.15) to define a general density on lfp
which correspcnds to the density of polygons in P**. This is
simply done by establishing a correspondence between cylinder sets of
R”  and the events {Nen}. We then obtain dF as dF on

A0 o -1

those sets and zero elsewhere.

More precisely, let z = (eo,el,zl,ez,zz,...) denote a point in

© ‘_(n) [

R . Define Z c R such that

(3.16) 2™ o 2 6 Ve D g 2™ aeserses (2.3)) .

stnce 2™ nz® - ¢ for n¢¥m, and since {N=n} = Z(n). we
have from (3.9),

@1, )y

(3.17) sz(N)(z) = ] dF . {zez

n=3 o(¥-1)

That (3.17) contains differential elements of varying length 2N-2

may seem awkward. However, it does express very nicely that the
dimension of the density dF (N) is varying over the cylinder sets
Z(n). This is simply a restazatement of the fact that an N sided poly-

gon is determined (up to tranmslation) by 2N-2 coordinates.

We summarize the results of this section by combining (3.15)-(3.17)

into
N-1
2 N-2
(3.18) ‘"’z(u)(" --2 (121 s1n(8,-0, 1))
1] 1T e (T dzy)
. exp{- = [ 2, A(8,)]1}1( T dG(6 dz ’
2 a1 VY a0 ' eo 1
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vhere z € z(n) =»N = n. sz(N) (z) 1is taken to have support only on

®
z= U Z(n) .

n=3

We observe an immediate fact from (3.18) concerning the distribution
of S and A under changes in Tt. The transformation z, = 12,,
i=1],...,N, yields the distribution of polygons for T = 1. If we
denote by S(tT) and A(T), the distributions of S and A under
intensity 1, then this transformation coupled with (2.4) and (2.6)
yields S(t) = 1S(1) and A(T) = ‘rzA(l). Thug, the distribution of
S(t) and A(T) are easily obtainable from the distributions of S(1)

and A(1).
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*k
3.4. The Polygon Density in Isotropic p .

*k
For isotropic pP , we have dG(8) --% dd. from (1.13), and

2

A(8) =5 from (1.20). As we mentioned in Section 2.4, we take

60 £ 0 and use the marginal density in (2.10) for dry . Thus,
1

the density (3.18) becomes

0 N-2

= 1 N-1 -
(3.19) aF () = (G im0,

N-2
. exp{- %-s}(iﬂl 8 dz,)d8, ,

n
with support on Z. (s = Z z, as in (2.4)).
i=1

By suitable reparametrization the isotropic density (3.19) can
be shown to be the same as the isotropic ergodic density derived by
Miles (1973) [11]. This agreement means that independent realizations
of the curling process yield the equivalent of an i.i.d. sample of
polygons from the ergodic distribution. We should remark that
ergodicity of the Poisson line process implies that the ergodic
distribution of polygons is the same in any P* {w.p.1). Hence the
distribution of polygons in P** will necessarily be identical with
the ergodic distribution of polygons in any P* (w.p.1l) if the ergodic

distribution is suitably defined.
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3.5. The Distribution of Polygon Characteristics in Isotropic P".

Before demonstrating how one can (in principle) derive the
distributions of N, S and A in isotropic P**, we remark that

some of the moments of these distributions are known. Some of these

are
[ E[N] = 4 E[S] = 2t/7 E[A] = /12
EIN?] = (n2+24)/2
(3.20) { E[SN] = n(n?+8)/2t E(s?] = w2 (n? + 4) /212

E[AN] = 7°/272 E[AS] = 1%/273 E[a%] = /274

E[NA%] = nd(8n? - 21)/211%  E[sA?] = 8n'/21t°  E[AD] = 4n!/76 .

(3.20) and other moment results have been derived by R. Miles, D. G.
Kendall, P. I. Richards and H. Solomon with ad hoc techniques. Miles
(1973) and Solomon (1978) contain explicit illustrations of some of
these derivations. Generalizing these techniques to find higher order
moments unfortunately seems to yield irreducible integral formulas. An
example of such difficulty is provided in Appendix A.2 where the author
has derived an integral formula for E[AA]. It is interesting to note
that E[N], E[A] and E[A2] above, agree (after normalization) with
the results derived by Goudsmit (1945).

The reasonably simple closed form expressions in (3.20) lead one
to believe that similarly simple analytical expressions exist for the
Joint and marginal distritutions of N, S and A. To date, as far as

the author knows, no one has succeeded in finding them. We now carry
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out explicitly some of the nanipulations of the density (3.19) to
demonstrate some of what is known about these distributional forms.

Having already carried out the integration of (3.4) over

2., in (3.13), the distribution of N is expressed from (3.19)
as :‘
!
|
. N} = .
(3.21) P{N=n} I drz(m(z) |

z(n)

For n = 3, (3.21) becomes

(3.22) P{N=3} = r J r sin 0, sin(al-ez)
0 Jo,-m Jo T
T T l+cos 62
‘T exp{- T 21[1+cos 8, =~ sinel( )] dzldezdel .

sin 62

The exponent in (3.22) is arrived at by the relationship

N N-2 l+cos ON-

1
(3.23) s = 2 z = z. [14cos8 6, ~sin @ (__..._.__.)]
=1 i 121 i i i® sin eN—l

derivable from (2.3) when 8y = O
By Fubini, we elect to first integrate out z, in (3.22) to

obtain

(3.24) %

T (0 sin elsin ezsm(el-ez)

(n-0,) -
0, 1’ gin ez-ain 8, -m(el-ez

Simplification of the integrand in (3.24) requires the trigonometric

identities

i
| P
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6, 6 & &
(3.25) sin Olain 0 sin(B -92) = 8(sin —= 3 cos 3 sin 3 cos i)
] -e 0.-8
. .:ln( )co-( 12 2)
and
8,-6, 6, 9
(3.26) sin 92 - gin 61- sin(el-ez) = 4gin( 2 ) (cos —5 cos -—2) .

(3.25) and (3.26) reduce (3.24) to

7t 0 0 e 6 8
j J (n-el)cos(-% - —%)sin —;‘- sin —% de
0 61-1r

'
AN

248,

which can be evaluated by elementary calculus techniques to yield

2
(3.27) P{N=3} = 2 - IE * 0.3551

a result previously derived by Miles (1964).

The derivation of P{N=3} above, although straightforward, is by
no means a trivial calculation. For P{N=4}, integration over 2(4)
requires separate integrations over D; and Dg defined in (3.5)
and (3.6). Through Fubini, we can integrate out z; and z, first
to reduce five-fold integrals to three-fold integrals. Unfortunately,
these three-fold integrals do not seem to yield closed form solutions

and must be evaluated by numerical methods. We substitute the Monte

Carlo approximationg in Chapter 4 for the numerical integration.
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The distributions of S and A should be obtainable (in principle)
from (3.19) with appropriate transformations involving tne expressions
(2.4) and (2,.6). The author however, has not yet found a transformation
that yields a tractable integral. Miles (1973) is able to derive a

partial result in this direction. He suggests the transformation ,
Zy+ 8, 22*510 i=2,...,N

which in our case reduces (3.19) to

N-2 g 3- I, 78, N-1

(3.28) (&) T asll—D (N sine,-8, .))
w w =1 i 1-1
sin eN_l N-1 N
(.Ezcos elrsin 8, +cot 8, ,cos 92))(11_13 dei)(il_lzd)‘i)] .

Let y = (63"'°’9N-1’52”"'£N)' so that ¢ determines the 'shape’
of the polygon. Given N, the ranges of § and Y do not depend on
each other. Thus (3.28) implies that given N, 21S/v 1is xz distri-
buted with 2(N-2) degrees of freedom. Miles also observes that given
N, S8 and y are independent, inotherwords the perimeter and the shape
are independent within each class of polygons of a fixed number of
sides.

We are able to make one more conclusion from (3.28). Since the
intensity T does not appear on the right, then given N, the distri-
bution of ¢ does not depend on T. But we know from Section 3.2 that
the distribution of N does not depend on 1. We conclude that the
distribution of 'shapes' of polygons, V¥, in isotropic P", is invariant

under changes in the intensity parameter T.
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3.6. The Polygon Densities for Families of Anisotropic ¢ .

Specification of the demsity of polygons (3.18) for particular
anisotropic p** requires dG(p) and )(g) for g¢ [0,7). Given

G, the calculation of )(g*) is as follows. From (1.18),
.
A(g%) = Jo | sin(g-6*)|dG(s)

0
= I * (-cos 9* sin g +ein g* cos g) dG(g)
0

+r (cos g* sin g - sin g* cos §) dG(g) .
0
*

Thus for the indefinite integral

(3.29) Flg) = I(cos 6* 8in 6 - ein 9* cos g) dG(g)
we have
(3.30) A(8%) = P(m) + P(0) - 2F(o*) .

Obtaining F and hence A(8%) in cloged form from (3.29) and (3.30)
is not always an easy matter. [12]

We now propose a family qc of continuous densities on [0,7) which
sre general, interpretable and yield A(6%) 1in closed form. Simple
expressions for A(6*) give us simpler polygon densities and make for

simpler, faster and more accurate simulations of the curling process,
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as we will see in Chapter 4. Define
C
(3.31) G = {G: G 1s of the form (3.32)}

1 n m
(3.32) dG(n.m.m.B)(e) - 121 Bilain 1(9’“1” ae

for 0¢[0,m), where

(n,m,a,B) = (n,ml, cees 30q,0ee ’qn’Bl’ eee 'Bn)
n e {0,1,2,...}
m € {0,1,2,...}

™ 7
(3.33) 1 ael-2 3

By € (0,)

n
k=] B K

i=1 i
m+l
&>
 where K = r 8in" 0 d0 = 1r1/2 + .
0 rG+1)

The interpretation of G( is as a mixture of

n,m,a,8)

n pulses in [0,7) with

m = gharpness of the 1th pulse

1
(3.34) 1

a,+ 12r__ location of the ith pulse

L By = relative size of the 1P pulse .

Notice that (m,,...,m ) = (0,...,0) yields isotropic G. We write

for such G.

)
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The intuitive interpretability (3.34) suggests that Q-G(o) is
a useful family of alternatives to isotropy, especially for statis-
tical analysis. We show in A.2 of the appendix that § is dense in
the class of continucus probability densities on ([O,n] so that §
essentially contains all alternatives. Finally, the functions A(0%*)
obtained from members of (G are in closed form as we show below.

Define for general G € §
(3.35) A(n’-’ .8) (6%) = [: l-in(e-e*)ldc(“’-,a’e)(e)
and for the special case
(3.36) An(e*) = *(1,m.o.1)(°*) .

The following relationship substantially reduces the computational

effort for finding general A.

n
(6%) = — 12 B,k A (6*-ai) .

(3.37) Ma,m,a,8) LSS

We derive (3.37) as follows
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_1 2 n Il1
(6%) = K [ |sin(6-6%) |[( ] B, |sin *(6-a,)|)db
8) 4= 1 1

A
(n,mn,qa, 0

-1 n m mi
K ] eij |sin(6-6%) | |sin (B-ai)lde
1=1 0

-1 n ™ lli
K- ) BiI |sin(6-(8*-a)) [sin * 6 40
i=1 0

-1 3
K B, K A (6%-qa.)
1=1 i mi mi i

Am(e*) and hence general X can be calculated by elementary methods
from (3.29) and (3.30). (This is a long calculation for large m).

For example,

(3.38) A(8%) = 2 [( - B%)cos O% + sin 6%] ,
(3.39) A (%) = == (cos® 6% + 1)
* 2 3w
and
(3.40) 2, (8%) = Tls—éﬂ- (1 + 2 cos® 8% - % cos® o%) .

We also propose the family QD of discrete alternatives to iso-

tropy defined by
(3.41) QD = {G: G has a p.m.f. g of the form (3.42)}
(3.42) g(ei) =Py for i=1,...,1 and 61 e [o,m) .

Consisting of a finite number of discrete pulses or atoms in [0,%),

we note that
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lim

G ®) e ¢°
.o (I;nl,...,ml,el,...,el,pl,...,pI) G

1-1,.."1

so that members of QD are (pointwise) limits or extremes of members
of Qc. Thus, investigation into anisotropic o~ generated by
members of QD is another way of gaining insight into which alterna-
tives to isotropy should be considered. Preliminary modelling by
members of qp would be a strategy to the eventual fitting of members
of qp.

Calculation of A(6%*) for members g € QD is done directly from
(1.18). Because the angles of the curling process pertain only to
intersections between members of £, we need only evaluate A(0%)

at the atoms of g. We have, for g of the form (3.42),

1
(3.43) A(8y) = 121 pilsin(ei-ﬁj)I , §=1,..., 1.

Notice that for the discrete uniform case, (i.e. where p:L = %- for

i=1,...,1), A(Gi) = A(0,) for all 1, j 1in (3.43)., For computer

]
simulation of the curling process induced by g € QD, we first
compute and store the I necessary values of A(0%) specified by
(3.43).

In Chapter 4, we carry out a simulation study of anisotropic

p’* induced by some of the simpler members of Qc and QD.
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We close this section by remarking that analogous to the moment
results in (3.20), Miles (1964) provides the following known first

and second order noments of N, S, and A in the general anisotropic

case.
[ E[N] = 4 E(S] = 4/AT  E[A] = 2/AT°
(3.44) ¢ E[N?] = An+12 E[aZ] = 4n/Atd
| E[SN] = 2(An+4)/At E[AN] = 2n/t° E[AS] = 4n/Ac>
where
T
(3.45) A = f A(0) dc(8)
0
as in (1.31) and,
-2
(3.46) n = r )2 a8 .
0
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3.7. Extensions of the Curling Process.

As we have seen in this chapter, the integral expressions obtained
for the joint distribution of the angles and side lengths in the general
case (3.18) and even in the much simpler isotropic case (3.19) are
too unwieldy for deriving the distributions of N, § or A. The approxi-
mate answers obtained by the simulation in Chapter 4 are a partial solution
to this difficulty. However, it seems that more tractable expressions
may be obtainable by exploiting the curling process in alternative ways.
We mention some of these alternatives in this section, and suggest possi- |
ble directions for future work.

The most obvious extension of the curling process is to use other
stopping times. For example, by stopping at the crossing of 21 (after
Lo), the curling process samples two adjacent random polygons. Other
stopping times sample more complicated combinations of polygons. Inves-
tigation of these related polygons would yield information concerning the
association among polygons. Furthermore, the unions of adjacent polygons
form other polygon aggregates. Miles (1973) has shown that the distribu-
tions of polygon characteristics in these aggregates correspond to certain
weightings of the distributions in p'. [12] Different stopping times
for the curling process enable us to explore these aggregates.

Another alternative is to skip selection of the initial angle,

(©,, 1in the anisotropic case and 01 in the isotropic case), and to

0
begin the curling process with the next variable, (91 in the aniso-

tropic case and Z, 1in the isotropic case). Indeed, careful examination

1
of the conditional densities of angles and sides in (2.25) and (2.26)
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reveals that these densities are independent of the initial angle. The
distribution of 90, or 91 in the isotropic case, applied to this
process would yield relationships among the probabilities in the distri-
bution of N. Presumably, these relationships would be similar to the
recursive integral equations alluded to by Miles (1964, 1973).

‘Finally we mention a method to exploit the invariance of the
distribution of N under changes in the intensity <T. In the appendix, ;

we show that this invariance yields a relationship between the distribu-

b

tion ¢f N and the probabilities of splitting a random N-sided polygon
by a random secant into a j-sided and an (N+4-j)-sided polygon. If
the procedure to select a random secant could be incorporated into the
curling process, it would be a valuable tool for the investigation of

these splitting probabilities.
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CHAPTER 4
MONTE CARLO SIMULATION OF POLYGON CONSTRUCTION

As we saw in Chapter 3, the expressions derived for the distribu-

tions of polygons in F’* are not manageable enough to obtain useful

forms for the distributions of polygon characteristics of main interest
namely N, S and A. 1In this chapter we demonstrate the real strength
of the curling process, to efficiently gelect an independent and

identically distributed sample of polygons from P’*.

4.1. Previous Studies.
Two previous Monte Carlo studieéiby Dufour [14) and Crain and

Miles (1976) have been aimed at approximating the distributions of

N, S and A 1in the isotropic case. Some of the estimates from
these studies are presented in Tables 4.1 and 4.2 at the end of this
section. In both of these studies, the simulation consisted of first
simulating a Poisson field of lines in a fixed bounded region, and then
extracting the polygons circumscribed by the lines in this region. For
" comparisons, we shall refer to this type of construction as the grouped
method, and to the curling process construction as the sequential method.
In this section we discuss how several drawbacks of the grouped
method are gsuccessfully avoided by the sequential method. We first
compare speed and efficiency, and then examine some estimation issues.
Crain and Miles also address these estimation issues and deal with them

as effectively as possible within their constraints. They even point

out how some of the stochastic constructions of polygons described
in Miles (1973), which possess the independent identically distributed
sampling properties of the sequential method, would avoid these

problems.




First of all, the sequential method is substantially faster and
requires far less computer memory than the grouped method. Dufour's
analysis processes 947 polygons formed by 65 random lines. The
information concerning Dufour's effort is unavailable, but the small
number of polygons he analyzed suggests his methods were slow. The
analysis by Crain and Miles processed 200,000 polygons in 66 sample
discs. [15] They used about 15 hours of computer time on an IBM 360/50,
a processing rate of about 200 per minute. They also required 180K
bytes of memory just to store the information on each sampled disc.
With the sequential method, we are able to process, in the isotropic
case 2,500,000 polygons on a PDP 10/KI in just 4.76 hours, a rate of
8745 per minute. Furthermore, storage is minimal because polygons can
be dispensed with as soon as they are processed. Adjusting these
figures for the machine differences [16], we estimate that compared
to the method of Crain and Miles our method is about 22 times faster
while requiring virtually no storage. These differences in effi-
ciency are probably due to the fact that the grouped method algorithms
spend the bulk of their time searching for polygons, while the sequen-
tial method algorithms compute each polygon quickly as it is needed.
It is interesting to note that Crain and Miles surmise that the sto-
chastic constructions they suggest would require the same magnitude
of computer effort per polygon as the grouped method.

The next comparisons concern estimation. The polygons generated
by the grouped method are dependent in each region sampled. As a

result, assessment of the precision of estimates is nontrivial since
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the dependency is rather difficult to assess. The curling process
on the other hand, by providing an i.i.d. sample, enables straight-
forward estimates of accuracy based on standard statistical methods.
It can be argued that the grouped method provides more information
such as estimates of the rate of ergodic convergence or the amount
of dependency. Some of this information could be provided by the
extensions of the curling process discussed in Section 3.7. However,
due to the complexity of this type of information, we do not pursue
it further.

Another problem that the grouped method must contend with is
edge effects. That is, the boundary of the region sampled will
necessarily intersect those polygons lying at the edge. The portions
of these polygons lying outside the region are unobserved. To deal
with this problem, one can undersample: exclude those polygons ¢rom
the sample; or one can oversample: include those polygons together
with estimates of their unseen properties. Crain and Miles use under-
sampling, and devise sophisticated techmiques for weighting the sample
to overcome bias (see Miles (1974)). There are no boundary constraints
on the sequertial method.

The last estimation issue we look at concerns the relationship

of estimates to the intengity of the process. The grouped method

essentially samples a Poisson field in a fixed bounded region as follows.

First n, the number of hits, is selected from a Poisson distribution
with intensity 1. Then n uniform random secants through this region

are selected.
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A subtle conceptual estimation problem is involved with this method.
Namely, given n, the lines are more likely to come from a Poisson
line process with the intensity of the maximum likelihood estimate
of T. The question then arises as for which intensity of a Poisson
line process does the sampled region give the best estimates? This i
problem affects distributional estimates for S and A, whereas

the distribution of N, as we showed in Section 3.2, {s invariant under
intensity changes. We do not face this problem with the sequential

methods.

Probably because of the computer effort involved with the grouped
method, previous Monte Carlo studies have focused exclusively on the case
of most interest, isotropic p**. The amount of extra computer effort
required to extend the sequential method to the anisotropic case is
small. The processing rate decreases to 5708 per minute in the slowest
case we analyzed. The value of estimating the distributions of polygon
characteristics in anisotropic p’* is that these distributions are
the alternatives to isotropy which must be considered when devising

statistical techniques for analysis.
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MONTE CARLO STUDY BY 8. DUFOUR
ISOTROPIC POISSON FIELD SAMPLE SIZE 947

INTENSITY 1T={

PROB(N = n)
n= 3
.36
PROB(S < s)
s= 5000
.03
s= 7.900
.67
PROB(A < a)
a=  5000@-1
.13
a= §. 000
. 30

TABLE 4.1

SAMPLE PERCENTILES

4 ) 6 7

.38 .19 . 054 . 010
1. 000 2. 500 5. 000

.11 . 26 . 51

10. 00 15. 00 20. 00

.79 . 92 . 98

. 1000 . 2300 . 5000 . 7300
.18 . 27 . 38 .45
a. 500 5. 000 10. 00 13. 00
. &7 . 80 . 90 .95
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TABLE 4.2

S8OME MONTE CARLD ESTIMATES OF CRAIN AND MILES [16)

ISOTROPIC POISSON FIELD

ns
*STD
+8TD
#WTD
+WTD
GRF
CRF

n=
#*STD
+STD
#*WTD
+WTD
QRF
CRF

3

. 3941

. 3558

. 35561
. 33814
. 353064
. 355066

. 00188
. 00210
. 001938
. 00208
. 002071
. 001958

VARIOUS ESTIMATES OF

PROB(N = n)

4 5
. 3781 . 1923
. 37359 . 1889
. 37790 . 19183
. 37774 . 18896
. 381374 . 189829
. 379904 . 190732

? 10
. 000262 . 000013
. 000297 . 000025
. 000248 . 000038
. 000291 . 000024
. 0002695 . 000027
. 000230 . 000021

69

P e b BTN U A N " T ik A DS 8

Y =

SAMPLE SIZE 200000

é

. 0389

. 06075
. 09922
. 60793

. 0986353
. 099129

11

. 0000032
. 0000024

. 0000024
. 0000013

sk i Aty Sas, NI

. 0132

. 01296
. 01318
. 01294
. 012714
. 012607

12

. 0000024

. 0000025
. 00000017
. 000000086




(n)
4.2. Fast Simulation of (2,0 n+1)|° .

(Note: We now drop the '~ ' notation for the curling process).

In this section we derive a simple and fast procedure for simula-
ting the conditional random variables znle(“) and 9n+1|z(n) in the
curling process. This procedure is not only the basis for the efficiency
of our simulation, but also lends substantial insight into the process
of conditional hits in a Poisson field. To derive it from the curling
process, we use the following theorem which shows quite clearly how
linear Poisson processes of varying intensity arise from random censor-

ing of linear Poisson processes of constant intensity.

Theorem 4.1.1. Let {Wiz i=1,...,%} be a linear Poisson process on
(0,2) with constant intensity fumction v. Let q(w): (0,2) » [0,1]
be a measurable function. Let Ti’ i=1,..., be random variables such

that conditional on W = (wl.w sees), the T,  are indeapendent and

i

P{(T, (W) =1} = q(w,) = 1-P{(T,|W) =0} .

Define S, = inf{i: Ti-l}

and S, = inf{i: T,=1 and 1>5§ }.

w
a) de (w) = Ve-vQ(w) q(w)dw where Q(w) = J q(w)dw
S 0
1

b) {Ws ; i=1,...,%} 1s & linear Poisson process with
i

intengity function vq(w).

Proof. (a) Let En(w) - {wl,wz,...,wn: 0<wy Swy<eeesw < w}
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. N

F, (W) = P{S,n and W < w}
“sl nzl 1 o=
- B[ e, ) aw)
1 ‘.-1 n
- n 1- L4 s e
nzl Ln(w) XL [ve (1-q(w ¢ )] o) ("n dw,dw, dw

where we define w 0. By the Fubini theorem, we have

0

T (v W, n-1
n B, ("n) - ( q(wi))clwld\\r2 dwn-l dwn .

By symmetry,

® W - Vn—l
= L, R =

n-1

I (1-q(w,))dw.,dw,_--.dw ]dw
I(’(w <w =1 b § 1772 n-1 n
— 1i—'n
i=1,...,n-1

Again using Fubini,

o (w “yw n-1] ¥

. Z Y a v Jn )n—l
JO e q(wn) @7 0 (l-q(wl))dw1 dwn

nm]

n

s -Vw (vw_-vaew N™"L ’
n n n
- nzl I: ve q(w ) oD ]dw .

By monotone convergence (and replacing the dummy variable v by v

for visual ease),
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ve-'\)V q(V) z .S_\,v_-v%!bﬂ)_n.] dv
n=0

o 2

- Iw ve oV q(v) VRV 4
0

w
- e~V ' . 1o~ VAW
0

(a) follows by differentiating.

(c) By exploiting the independence of the Wi's (see (A.2)), and
the conditional independence of the Ti's, the argument in (a)

generalizes to yield the joint density for

W = (W, seee W )
s(m 5 Sa

By ) =T e
ws(n) s(“) i=1 1 .(n)
the desiiod joint density. ||

Now recall that the conditional density of (ane(n)). (side
length in the curling process), was derived in Section 2.6, (2.23),
as

4.1) ar Ie(“)(z“) - 1q(z_,6 ™) exp{-r0(z 0 }ax_
n
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where q(zn.e(n)) and Q(zn,O(n)) are defined in (2.13) and (2.24)
respectively. Referring to Figure 3.1, intuitively z is the dis-

tance from A along zn to v given that Ln+1 does not cross

n+l
back through the polygon being formed.

horizontal

Figure 3.1.

We make the following identifications with Theorem 4.1.1. Let
{wi} correspond to the point process of hits along £  starting
from v unconditionally, i.e. as if ln were an arbitrary line
in §. By Theorem 1.2.2, {Wi) is a linear Poisson point process

with constant intensity

6.2) Ve t).(en) .
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Associate with each point W the angle °i that !'n makes

i
with the intersecting line. The angles 01 are i.i.d. with the

density
(4.3) dF(¢1) = O‘(Gn))-l sin(en—¢)dG(¢) for ¢¢ (en-w,en)

given by (1.22) from Theorem 1.2.3. From Section 2.5, ¢i would be

t J
a 'legal' candidate for 9n+1 if ¢ 1€ (ai,en) where «, corresponds

i

to the angle of the diagonal from v, to w,  as in (2.11) and (2.14).

i

horizontal
Figure 3.2,

For example in Figure 3.2, ¢, 1is not 'legal' but 02 is.

Def ine l

1 if ¢1e (ai,en)

0 1if ¢1¢(ai,en) .
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Then from (4.3) and (2.13), P{Tilﬂ} = q(w,) where

-1
(4.4) atw,) = A(8)) I dr(6,)

- gSw.O(n)z
A(Bn) :

Combining (4.2) and (4.4) with Theorem 4.1.1(a), we observe that

(4.5) dF

v (W =V exp{-vQ(w)}q(w)dw
S

1
= Tq(w,e(n))exp{-TQ(w,e(n))}dw

which 1is precisely the same density as dF in (4.1). Further-

le(n)
more, the independence of the ¢1's allows us to infer that

-1
4.6) dF @ = (qw. ,6™))  sin(6_-6)dc(d)
°S Iw 8 n
1 5
for ¢E:(asl,6n), precisely the density dFe (n) given by
(2.12). o+l

We summarize the above results in the following theorem.
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Theorem 4.1.2. Let Vl,VZ,... be i.1.d. with exponential density

(4.7) dF(v) = TA(en)exp{-TA(Bn)v}dv y» veE (0,2 .

Let &,%,... be i.1.d. (and independent of the Vi's) with density
(4.8) dF{¢) = ()\(9“))—1 sin(en-¢)dG(¢) s b€ (en-ﬂ.en) .

Let

T = inf{i1: ¢ ¢ (ai,en)}.

T
Then Zn = 121 V‘,L and 0n+1 = ¢T have the bivariate conditional density
4.9 dFZ o ]e(n)(zn'en+l) =T sin(en—9n+l)

n’ n+l

-+ expl-1q(z_,6'™)) ac(o_, )dz_

on zn8(0,°°), 6n+1€(an,6n).

(Note that the joint density appearing in (4.9) is obtained as the pro-

duct of (2.12) and (2.22)).

In the following flow diagram we illustrate the ease with which
Theorem 4.1.2 enables us to simulate Z, and en+1. The particular

techniques for simulating Vv

1 and °1 in the middle steps are dis-

cussed in the next section.
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Procedure for Generating Zn,G 'l from dF
z ,0
n’ n+l

(4.10)

Com D

Generate v from

i
(4.7)

f
V

Generate ¢i from

(4.8)

is

¢ie[ai.9n)?
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We remark that a particularly nice programming feature of the
procedure (4.10) is that we require only X _1'Yp-1° (see (2.5)),
and On from G(n) for the calculation of A(en) and the bounds
(ai,en), (see (2.14)). As discussed in Section 4.4, this information
is easily and necessarily stored sequentially during execution of the

main program.
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4.3. Some Simulation Techniques.

Our computer system provides, as do most computer systems, a fast
routine for generating an independent sequence of uniform [0,1] random
variables, which we shall denote by gl,gz,... . [17] To generate a
general independent sequence of random variables NysNyseee with distribu-

tion function F, it is well known that we can simply take n_ = F-I(Ei).

i
How well this works in practice depends on the ease with which we can
invert F.

To gemerate V, in (4.10) we simply take V, = (rx(en))'l log &,

i
as the exponential distribution (4.7) is easy to invert. The difficulty

of simulating znle(“)

directly from the distribution induced by the
density (2.18) should be apparent. Inevitably it would require evalua-
tion of A T(E) where A(z) = [2A(8)+d A(a)-d Mo ;). a
calculation hopeless by analytical methods and very long by numerical
methods.

The generation of ¢1 in (4.10) takes a bit more doing. Although
in the isotropic case the distribution (418) is easy to invert, in the
anisotropic case this is not gemnerally true. To get around this problem,
we resort to an old-fashioned simulation method, the general rejection
technique. An informative discussion of this technique, apparently
introduced by von Neumann, appears in Butler (1956).

We describe our application of the rejection technique to the

gimulation of °i with the flow diagram below. We first need the

following notation. Rewrite the density (4.8) of Qi as
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(4.11) dr(¢) = K g(4) du(¢)

where g(¢)dd = dG(d), dH(P) = %-sin(en-¢)d¢ and K is a normalizing

constant. Let m > 0 be such that m sup g(¢) < 1, (preferably = for
¢

maximum efficiency).
Notice that H 1is easily invertible as H(E) = arcos(1-2£)+-6n~w

for £ € [0,1].

Procedure for Gemerating &, from dF(4) 1n (4.8).

[ C START )
V.

Generate 51,52

independent uniform /h

(4.12)

IS \
g, < mg(u'l(zlmf
g[, YES
. 6, = 0N

NO :;;
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This technique seems to work quite well as long as g = dG is not

1 is readily

too variable. However, if it is very variable and G
obtainable, we can reverse the roles of H and G 1in (4.9) to %
achieve greater efficiency.

To show that the density of the ¢i generated by (4.12) 1is correct

simply notice that
P(E, < mg(B (€ ]E)} = g H(E) . '

1 Since £, 1s uniform on [0,1], the density of ¢, = H “(£) 1s

dF(9) = g(¢) dH(¢)

agreeing with (4.11).
We use the same general ideas for generating 90 and 61 from
the joint density dFe g. appearing in (2.7). Pirst we generate
0’1

n, with density dG, by taking G-l(E) if G-1 is easily obtainatlle,

0
or by (4.12) with dH = 1. Then we generate n,; by (4.12) with

H-I(E) = arcos(1-28) + ny- Finally, we obtain 00 = min(no,nl) and

el - w(nopnl)o
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4.4, The Simulated Curling Process.

We present in this section the flow diagram outlining the pro-
gramming steps for the generation of each random polygon by the curling
process. The steps at which 60,91 and (zn,9n+1) are generated,
incorporate the methods developed in Sections 4.2 and 4.3. We implement
these methods as subroutines in our program.

As each polygon 1s generated we need to output N, § and A for
computing the statistics we tabulate. Each of these polygon characteris-
tics can be obtained by incrementing partial sums as each side length
and angle (zn,9n+1) is generated. In the flow diagram we will use

the following notation for formulas required to compute and save partial

information during execution, This notation corresponds to (2.4), (2.5),

(2.6), (3.1) and (3.3) which are necessary for the calculation of N, S

and A.
) n
x " 121 z, cos ei
n
Vo ™ 121 z, sin 61
n-1
(4.13) 9 u = -sec(6 -6,) 121 z, 8in(0 ~6,)

L =5

n
a = % 121 (xi-xi_l) (y1+71_1) , (xo,yo) = (0,0) .




In the last branch of the construction, after N has been

we compute z._1 eN and zy from (4.13) via (2.3) as

*N-17 T Una

y - ("12:-1*”5-1)1/2
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(4.14)

s

Flow Diagram for Curling Process Construction

of Random Polygons
r
(o)

n=0

V

Generate

8264

v

n = n+l 1\
Generate

(n)

zn,6n+1i6 Xn*Yn*5n%,

V N

Increment

Increment

u
R

NO

N = n+l

R

Compute

Zn-1'O02y

W

Increment S = °N

XN YN SN2 8y | A=ay
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4.5. Simulation Results. i

In this final section the results of a Monte Carlo investigation :
of the distributions of N, S, and A in various P by simulation
of the curling process, are presented in three subsections consisting
of the isotropic case, some anisotropic cases induced by members of
Qc, :nd some anisotropic cases induced by members of QD. The
intensity of the Poisson field 1s kept at T = 1 in all the simula- |
tions. The related distributions for different intensities follow
immediately from the observations made at the end of Sections 3.2 and
3.2.

Three tables are presented for each case. The first table presents
sample percentiles. The second presents sample moments, the estimated

standard error of the estimates, and the numerical values for some of

the known moments given in (3.20) and (3.38). These are provided for
an assessment of the numerical accuracy of our computing facilities.

The last table lists characteristics of the twenty five largest polygomns
(in area) sampled. Included in this list is the isoperimetric ratio

1= Suf#NA for each of these polygons. The well known isoperimetric
inequality states that I > 1, with equality holding only for a circle.

Thus I is a measure of the circularity of a polygon.

4.5.1. The Isotropic Case.

Tables 4.3a-c present the results for the isotropic case. Being
the case of primary interest in the literature, a sample size of 2,500,000
polygons was simulated with the goal of obtaining the most precise esti-

mates of the unknown distributional characteristics to date. Fortunately,
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the simulation rate of 8745 polygons per minute, was the fastest of
the simulations. This was probably due to the fact that angle simula-
tion here did not require the somewhat inefficient rejection technique
discussed in Section 4.3.

The width of the 992 confidence band about the sample distribution
function induced by the percentile estimates in Table 4.3a is obtained
from the familiar Kolmogorov statistic as .00103. (Hence the band for
the N probabilities given is .00206). The estimates for N provided
by Dufour, and Crain and Miles in Tables 4.1 and 4.2 are close but not
always within these limits. It is comforting to compare the estimate
.3552 of P{N=3} with the known theoretical value of .3551 derived
in (3.27).

The sample moments presented in Table 4.3b seem to be extraodinarily
accurate. Indeed, the estimates of the known moments are in every case
within half of a standard error of the true value! Thus, there is every
reason to believe that the estimates of the unknown moments are similarly
accurate and can perhaps be useful in the pursuit of the theoretical
values.

The largest polygons (in area) sampled are listed in Table 4.3c.
The initial motivation for providing this list of extreme values was
to investigate a conjecture by D.G. Kendall [19] that I|A+ 1 as
A > o, that the largest polygons in area tend to be circular. The
isoperimetric ratios in the table do not appear to be getting smaller
though it is perhaps unreasonable to expect that this sample size
emulates what happens near infinity. What this facinating conjecture

does bring to mind however, is whether or not the large polygons are
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many sided. It is interesting to note that of the 53 polygons with

10 or more sides in the sample, none appeared in this list.
if

Finally,

1dall's conjecture is false, the next question to ask is, to

what value does IIA converge as A + ® {if it converges at all?

87




TABLE 4. 3a

1SOTROPIC CASE SAMPLE SIZE 2500000
G(O) PROCESSING RATE 8745/MIN

SAMPLE PERCENTILES

I

PROB(N = n)

n= 3 4 S ) 7
. 3952 . 3814 . 1895 . 5870e-1 . 127%@-1
n= 8 9 10 11 12

_2082e-2 .2712e-3 .1800e€-4 . 2800€-5 . 4000@-6

( O POLYGONS WITH N > 12)

PROB(S < s)
s= . 1000 . 2500 . 5000 . 7500 1. 000
_1ig8e-1 .=2842@~-1 .S&99e-1 . 8528e-1 1135
s= 1.500 2. 500 3.750 S. 000 6. 250
. 14693 . 2764 . 3993 . 5080 . 6013
s= 7. 500 8. 750 10. 00 12. 50 15. 00
. 6801 . 74595 . 7987 . B76%5 . 9257
s= 17.50 20. 00 2%. 00 30. 00 50. 00
. 9561 . 9744 . 9917 . 9974 1. 000

( 54 POLYGUNS WITH & > 50)

PROB(A < &)
a= .S5000@-2 .1000@-1 .2500€-1 .S5000e-1 . 1000
. 4536@-1 . &388@-1 . 9968@-1 . 1392 . 1931
a= . 2%00 5000 . 79500 1. 000 1. 500
. 2924 . 3926 . 4615 . 5140 . 3929
a= 2. %00 5. 000 7. 500 10. 00 12. 50
. 4944 . 8228 . 8844 . 9201 . 9424
a= 15 00 20. 00 30. 00 50. 00 100.0
. 9974 . 9752 . 9902 . 9978 . 9999

(334 POLYGONS WITH A > 100)
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TABLE 4. 3b

ISOTROPIC CASE SAMPLE SIZE 2500000
G(O) PROCESSING RATE 8745/MIN
SAMPLE MOMENTS
N S A

1ST MOMENT = 3. 99980 6. 28409 3. 14061
(STD ERR) .6116@-3 . 3401@-2 . 3934e-2

2ND MOMENT = 16. 9336 &8. 4150 48. 5634
(STD ERR) . 5490@-2 . 7704@-1 . 2052

3RD MOMENT = 76. 0337 1028. 67 1718. 34
(STD ERR) . 3977@-1 2. 073 23. 32

4TH MOMENT = 362. 110 19520. 2 107669.
(STD ERR? . 2768 é8. 18 4225

5TH MOMENT = 1826. 58 444941 . 1032948
(STD ERR) 1. 954 2665. . 969546

6TH MOMENT = ?735. 80 . 1180168 . 13629110
(STD ERR) 14, 32 . 1192646 . 2483e9

KNOWN MOMENTS
N S A

15T MOMENT = 4. 00000 4. 28319 3. 14159

2ND MOMENT = 16. 2356 68. 4438 48. 7045

3RD MOMENT = vnknown unknown 172%5. 88
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TABLE 4. 3¢

ISOTROPIC CASE SAMPLE SIZE 2500000

G(O) PROCESSING RATE 8745/MIN

THE 25 LARGEST POLYGONS (IN AREA)
I =ISOPERIMETRIC RATIO

RANK N S A I
1 8. 000 64. 7% 285. 0 1. 169
2 &. 000 61.99% 243. 8 1. 252
3 9. 000 59.18 219. 1 1. 272
4 7. 000 55. 94 206. 1 1.208
S 6. 000 54. 77 203. 0 1. 176
é 6. 000 57. 20 199. 3 1. 306
7 8. 000 93. 28 193. 4 1.299
8 8. 000 54, 20 192. 8 1. 212
9 &. 000 57. 89 187. 6 1.421
10 7. 000 51. 27 185. 8 1. 126
11 8. 000 53. 92 184. 6 1. 253
12 9. 000 S53. 65 181. 2 1. 264
13 2. 000 50.17 180. 3 1.111
14 6. 000 62. 70 177. 4 1.763
15 4. 000 S52. 78 172. 2 1. 297
16 6. 000 58. 73 171. 2 1. 603
17 7. 000 50. 21 170. 8 1.174
18 ?. 000 53. 00 169. 4 1.319
19 8. 000 50. 50 148. 4 1. 205
20 8. 000 S52. 30 166. 7 1. 306
21 7. 000 53. 74 165. 8 1. 386
22 8. 000 53. 02 165. 2 1. 354
23 7. 000 48. 07 163. 9 i.122
24 7. 000 54. 43 160. 9 1. 465
25 3. 000 49. 71 159. 0 1. 237
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4.5.2. Anisotropic Cases Induced by qc.

Tables 4.4a through 4.7c present the simulation results for

anisotropic cases induced by the following four members of qc.
ac © = @2 + T atn 0)d0
(2,0,1,1,w7/2,0,0) 2

dG(z.o,z,l,z,o.o)(e) = (2w)'1(1 + 2 sinze)da

XO) (2m "1+ (8/3) s1n%0) a0

465 0,4,1,8/3,0,0

460, 4 4110,/ = 3 (s1n°0 + stn’(8-Dae

The first three distributions are mixtures of the uniform with
progressively sharper pulses. In each case the pulses are weighted
so as to contribute half of the total probability to the mixture.

The last case is a mixture of two sharp pulses located at a distance
of 7/3 from each other. The functions A(8) for each of the
distributions are obtained from (1.20) and (3.37)-(3.40).

The purpose of these simulations was exploratory so that sample
sizes were kept to 100,000, far smaller than the 2,500,000 for the
isotropic case. The simulation rate for the first case was 7211
polygons per minute and decreased to 5708 per minute in the last case.
Ostensibly, this decreasing rate was primarily due to increased ineffi-
ciency of the rejection technique for simulating the angle distribution
with sharper pulses. Nonetheless, this slowest case is still quite
fast as it took only a total of 17.52 minutes of cpu time.

Turning immediately to the tables of sample moments in each of

these cases, we see that the accuracy of the simulation is breaking




down. For example, estimates of E[N] are underestimated by several
standard errors in every case. Extensive investigation into this
discrepancy revealed that the problem is due to mumerfical rounding
error which accumulates in the less stable anisotropic cases.
Correction of this inaccuracy would require the use o% a more accu-
rate programming language. [20]

In light of these numerical problems, the high precision from
our sample size is irrelevant. Nonetheless, the estimates themselves
are close enough to the true values so that general information about
the nature of the distributions of N, S, and A in these an:l.u.atropic
cases can be gleaned from the results. Also, the inaccuracies are less
severe for the estimates with S and A. Rather than go into a lengthy
analysis of these results, we observe that none of these cases differ

markedly from the isotropic case.
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ANIS8OTROPIC CASE

€(2,0,1,1,7/2,0,0)
PROB(N = n)
n=a 3
. 3580
n= 8
. 20508-2
({
PROB({(S < s)
s= | 1000
. 1069@-1
s= §, 500
. 1668
s= 7. 300
. 6731
s= 17.90
. 9534
{
PROB(A < a)
a= _ 35000@-2
. 437460~3
a= | 2%00
. 2900
a= 2, 3500
. 6919
o= 13 00
. 9966

TABLE 4. 4a

SAMPLE PERCENTILES

4
. 3819

9
. 33008-3

SAMPLE BIZE
PROCESSING RATE 7211/MIN

9
. 1892

10
. 3000e-4

é
. J6b610~1

i1
. 0000

O POLYGONS WITH N > 12)

. 2300
. 270601

2. 300
. 2734

8. 7%0
. 7394

20. 00
. 9728

. 3000
. 391601

3. 730
. 3943

10. 00
. 7930

23. 00
. 9907

. 7900
. 8378e-1

3. 000
. 5018

12. 50
.8714

30. 00
. 9971

4 POLYGONS WITH 8 > 30)

. 1000@~1
. 6269@~1

. 9000
. 3902

9. 000
. 8208

20. 00
. 9746

. 2500e-1
. 99%0e-1

. 7900
. 4589

7. 900
. 8832

30. 00
. 9901

. 3000e-1
. 1389

1. 000
. 9119

10. 00
. 9192

$50. 00
. 9978

( 15 POLYOONS WITH A > 100)

100000

7
. 122401

12
. 0000

1. 000
. 1122

6. 2%0
. 9944

195. 00
. 9223

30. 00
1. 000

. 1000
. 1920

1. 500
. 9903

12. 30
. 9416

100.0
. 9999
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ANISOTROPIC CASE
C(2,0,1,1,7/2,0,0)

18T MOMENT
(8TD ERR)

2ND MOMENT
(STD ERR)

3RD MOMENT
(8TD ERR)

4TH MOMENT
(8TD ERR)

STH MOMENT
(8TD ERR)

6TH MOMENT
(8TD ERR)

1TH MOMENT

2TH MOMENT

TABLE 4. 4b

SAMPLE SIZE

100000

PROCESSING RATE 7211/MIN

SAMPLE MOMENTS

N 8

3. 99139 6. 38409

. 30440-2 . 1729e-1
16. 8574 70. 6676

. 2731@-1 . 4007
79. 5022 1082. 84

. 1981 11. 24
338. 748 21048.0

1.389 398. 9
1806. 37 496054,

9. 868 . 1739e%
624, 29 . 138006€8

73. 27 . 875886

KNOWN MOMENTS

N 8
4. 00000 6. 40278
16. 9330 unknown
94

A

3.17273
. 19868-1

49. 52%0
1.079

1796. 20
127.0

118871.
. 206665

. 12102%e8
. 3747@7

. 161634010
. 70859

3. 20139

50. 9963




TABLE 4. 4c

ANISOTROPIC CASE SAMPLE SI1ZE 100000

4 THE 23 LARGEST POLYGONS (IN AREA)
1 =ISOPERIMETRIC RATIO ]

RANK N s A I
1 &. 000 8s. 86 199.8 1. 242
2 7. 000 s2. 38 167. 1 1. 306
3 4. 000 52. 74 163.7 1.35%2
4 6. 000 4s. 74 134. 6 1.237
s 7. 000 47. 20 128. 6 1.378
6 &. 000 4s. 62 125. 7 1.317
7 6. 000 4s. 78 121. 4 1.373
8 7. 000 42. 63 120. 3 1. 202
9 8. 000 39. 86 115. 8 1. 092
10 7. 000 42, 59 111.2 1. 298
Q 11 &. 000 43, 60 109. 8 1. 308 s
12 8. 000 42. 38 108. 6 1.394
13 7. 000 48, 99 104. 9 1. 821
14 7. 000 42. 99 103. 8 1. 421
18 6. 000 41,18 102. 0 1.323
16 6. 000 62. 47 98. 57 3. 151
17 9. 000 a7. 07 97. 13 1.126
18 6. 000 39. 39 9%. 57 1. 292 T
19 8. 000 40. 67 9s. 01 1.385
20 3. 000 40. 14 91. 83 1.396
21 7. 000 36. 87 90. 47 1. 196
22 8. 000 40. 37 89. 26 1.433 j
23 &. 000 37. 00 87. 25 1. 249
24 7. 000 42. 20 86. 17 1. 445
25 &. 000 A7. 24 86. 09 2. 063




TABLE 4. Sa
ANISOTROPIC CASE SAMPLE SBIZE
€(2,0,2,1,2,0,0)
SAMPLE PERCENTILES

PROB(M = n)

n= 3 4 -] 6

. 3403 . 3810 . 1877 . 3675@-1
n= 8 9 10 11

.1750@-2 . 3900€-3 .3000@-4 . 0000
¢ O POLYGONS WITH N > 12)

PROB(S8 < )

s= . 1000 . 2300 . 3000 . 7300

. 1072e~1 . 2483e-1 . 5503e¢-1 .8327e-i
s= 1. 3500 2. 300 3.7%0 3. 000

. 1666 . 2716 . 3914 . 4937
s= 7.3%00 8. 750 10. 00 12. 30

. bbb . 7306 . 7853 . 8636
s= 17.30 20. 00 29. 00 30. 00

. 9498 . 9704 . 9697 . 9962

( 4 POLYOONS WITH 8 > 30)

PROB(A < &)

s= . 3000€@-2 .1000€~-1 .2%00@-1 . 350008-1
. 44340@-1 . 6308@~1 .98350@-1 . 1384

a= 2300 - . 9000 . 7800 1. 000
. 2922 . 3910 . 4390 . 9111
a= 2 300 3. 000 7. 500 10. 00
. 6904 . 8192 . 8823 . 9162
a= 15, 00 20. 00 30. 00 350. 00
. 9564 . 9744 . 9900 . 9978

( 14 POLYOONS WITH A > 100}

I 96

100000
PROCESSING RATE  71S59/MIN

7
. 1219@-1

12
. 0000

1. 000
. 1106

6. 250
. 3881

139. 00
. 9173

80. 00
1. 000

. 1000
. 1928

1. 300
12. 50
. 9406
100.0
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TABLE 4. %
ANISOTROPIC CASBE SAMPLE S81ZE 100000
c(2,0,2,1,2,0,0) PROCESSING RATE 7139/MIN
SAMPLE MOMENTS
N 8 A
18T MOMENT 3. 984629 5. 49333 3. 19942
(8TD ERR) . 30360-2 . 1773@-1 . 20160-1
2ND MOMENT 16. 8129 73. 6189 50. 86863
(STD ERR) . 27188~} . 4229 1. 103
3RD MOMENT 75. 1797 1160. 47 1890. 60
(STD ERR) . 1964 12. 22 121.8
4TH MOMENT 3%6. 911 23306. 9 124244,
(STD ERR) 1. 349 438. 4 . 189885
STH MOMENT 1790. 74 568391. . 1199698
(STD ERR) 9. 649 . 1883583 . 321007
&TH MOMENT 9507. 88 . 16290168 . 146814010
(8TD ERR) 70. @1 . 9298@4 . 9846409
KNOWN MOMENTS
N S A
1TH MOMENT 4. 00000 6. 394637 3. 27819
2TH MOMENT 16. 9333 unknown 33. 01957




T ———

TABLE 4. S¢

e e

ANIBOTROPIC CASE SAMPLE SBIZE 100000
G PROCESSING RATE  71959/MIN
(2,0,2,1,2,0,0)

THE 29 LARGEST POLYQGUNS (IN AREA)
1 =ISOPERIMETRIC RATIO

RANK N 8 A 1

1 8. 000 61. 99 193. 9 1. 997
2 8. 000 44. 70 134.7 1.132
3 6. 000 39. 69 193.7 1. 843
4 7. 000 31.00 149.9 1. 381
S 7. 000 49. 39 142.3 1. 364
6 7. 000 43. 06 120. & 1. 224
7 3. 000 47. 54 113. 2 1. 9689
8 S. 000 43. 01 108. 0 1. 343
? 6. 000 43. 99 107. 9 1. 431
10 7. 000 42. 34 104. 8 1. 361
11 6. 000 40. 12 103. 8 1. 233
12 7. 000 51. 98 101. 3 2. 087
13 6. 000 40. S4 101. 1 1. 294
14 4. 000 41. 4% 101.0 1. 3%
19 8. 000 40. 49 98. 96 1.318
16 6. 000 39. 3% 98. 32 1. 254 R
17 7. 000 40. 3% 97.79 1. 326 ’
18 7. 000 44, 18 97.39 1. 999
19 6. 000 41. 04 97. 09 1. 381
20 9. 000 41.7% 96. 3% 1. 440
21 8. 000 41. 4% 96. 30 1.417
22 S. 000 42. 48 6. 24 1. 492
23 &. 000 40. 90 93. 34 1. 396
24 4. 000 43. 94 93. 02 1. 617
29 7. 000 38. 01 4. 96 1. 211




i TABLE 4. 6a
3
' ANISOTROPIC CASE SAMPLE SIZE 100000
6(2,0,4,1,8/3,0,0) PROCESSING RATE  &282/MIN
SAMPLE PERCENTILES
s
y
PROB(N = n)
n= 3 4 s 6 7
. 3635 . 3834 . 1836 . B612e-1 . 1143e-1
L n= 8 9 10 11 12
. 1780€-2 . 1500€-3 .2000@-4 .1000@-4 .0000
{ O POLYGONS WITH N > 12)
PROB(S < s)
s= . 1000 . 2500 . 5000 . 7500 1. 000
. 1066@-1 . 2725e-1 .5422e-1 .8084@-1 .1078
s= 1.3500 2. 500 3. 750 5. 000 6. 250
. 1619 . 2633 . 3820 . 4865 . 5743
s= 7.300 8. 7%0 10. 00 12. 30 15. 00
. 6521 . 7179 . 7734 . 8545 . 9079
s= 17.350 20. 00 25. 00 30. 00 30. 00
. 9422 . 9645 . 9870 . 9951 1. 000
( 4 POLYGONS WITH § > 30)
PROB(A < a)
a= . 35000@-2 .1000@-1 .23008-1 .5000@-1 .1000
. 4443€-1 . 6308e-1 .9824e-1 . 1373 . 1908
) a= . 2%00 . 5000 . 7300 1. 000 1. 500
b . 2889 . 3897 . 4561 . 3082 . 5860
b a= 2. 500 S. 000 7. 500 10. 00 12. 50
. 6862 . 8154 . 8783 . 9149 . 9373
a= 15 00 20. 00 30. 00 50. 00 100. 0
. 9532 . 9726 . 9889 . 9972 . 9999
| ¢ 15 POLYGONS WITH A > 100)
. 99
1
.
e




ANISOTROPIC CASE
€(2,0,4,1,8/3,0 0)

TABLE 4. &b

SAMPLE SIZE
PROCESSING RATE

SAMPLE MOMENTS

N 8
1ST MOMENT 3. 97474 &. 72080
(STD ERR) . 30120-2 . 1848@-1
2ND MOMENT 14. 7098 79. 33095
{STD ERR) . 2685@-1 . 4602
3RD MOMENT 74. 4009 1307. 63
(STD ERR) . 1928 13. 78
4TH MOMENT 351. 152 27472. 4
(8TD ERR) 1. 329 500. 0
5TH MOMENT 1754, 04 &98314.
(8TD ERR) 9. 304 . 20925
&6TH MOMENT 9231. 63 . 206981e8
(8TD ERR) &7. 99 . 965406
KNOWN MOMENTS
N 8
1TH MOMENT 4. 00000 &. 79264
2TH MOMENT 14. 93446 unknown
100
o

100000
&282/MIN

A

3. 29444
. 2069@-1

3. 6550
1. 061

1944.86
5. 11

115541.
. 1087@5

. 93224187
. 138607

. 90831089
. 1882e9

A
3. 39632

956. 9203
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TABLE 4. &c¢

ANISOTROPIC CASE SAMPLE SIZIE 100000
G(2,0,6,1,813,0,0) PROCESSING RATE  46282/MIN

i

THE 23 LARGEST POLYGONS (IN AREA) |
1 =ISOPERIMETRIC RATIO

i

RANK N S A 1
1 7. 000 58. 34 154. 1 1.757
a 6. 000 48. 53 135. 1 1,387
3 &. 000 48. 88 131. 6 1. 446
4 S. 000 446. 52 130. 6 1. 319 l
) S. 000 49. 43 128. 0 1. 519 i
& 6. 000 43. &9 123. 2 1. 232
7 7. 000 43. 95 123. 2 1. 364 :
8 7. 000 49. 98 121. 9 1. 637 j
9 &. 000 43.17 115. 3 1. 408
10 5. 000 43. 33 110.9 1. 347
11 &. 000 42. 36 108.7 1. 314
12 6. 000 43. 49 107.3 1. 533
13 7. 000 94. 30 105. 7 2. 218
14 7. 000 54. 72 109. 2 2. 269
13 7. 000 40. 3% 103. 2 1. 236
16 7. 000 42. 49 99. 72 1. 441
17 6. 000 42. 30 99.70 1. 441
18 8. 000 39.72 98. 94 1. 26%9
19 7. 000 40. 82 97. 86 1,359
20 9. 000 43. 27 97. 67 - 1,670
21 6. 000 40. 58 6. 48 1. 3595
22 8. 000 43. 24 96. 27 1. 546
23 &. 000 42. 19 935. 81 1.478
24 5. 000 40. 24 94. &2 1. 362
25 7. 000 43. 39 93. 59 1. 602
101




TABLE 4. 7a

ANISOTROPIC CASE SAMPLE SIZE 100000

SAMPLE PERCENTILES

PROB(N = n)
n= 3 4 S 6 7
. 3%43 . 3899 . 1872 . 9527e-1 . 1149€~1
n= 8 9 10 11 12
. 1650@-2 . 1900@-3 .1000€-4 . 0000 . 0000
( O POLYGOMS WITH N > 12)
PROB(S < s)
s= . 1000 . 2500 . 9000 . 7500 i.000
. 1030@-1 . 2564@—31 | S227@~1 .7834@-1 . 1050
s= 1, 300 2. 500 3. 750 8. 000 6. 250
. 1976 . 2582 . 3769 . 4805 .5714
s= 7.300 8. 750 10. 00 12. 30 15. 00
. 6484 . 7144 . 7496 . 8528 . 9060
s= 17 950 20. 00 2%. 00 30. 00 50. 00
. 9406 . %636 . 98646 . 9953 . 9999

( 7 POLYGONS WITH § > 350)

PROB(A < a)
a=  35000@-2 .1000@~-1 .Q500&8-1 .S5000@-1 .1000
. 4319@-1 . 6074@-1 . 9504@-1 . 1338 . 1868
a= 2300 . 9000 . 7300 1. 000 1. 500
. 2041 . 3844 . 4310 . 5047 . 9813
a= 2 500 S. 000 7. 500 10. 00 12. 50
. 46814 . 8125 . 8758 . 9123 . 9356
= 135 00 20. 00 30. 00 30. 00 100. 0
. 9314 . 9710 . 96881 . 9973 . 9998

( 22 POLYQGONS WITH A > 100)
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— ST ST
TABLE 4. 7b
ANISOTROPIC CASE SAMPLE SIZE 100000
PROCESSING RATE 5708 N
] €(2,4,4,1,1,0,1/3) dat
l k SAMPLE MOMENTS
t N s A
|
1ST MOMENT = 3. 98548 6. 78058 3. 364630
(STD ERR) . 29968-2 . 1850@-1 . 21240-1
2ND MOMENT = 16. 7814 80. 2033 56. 4374
{STD ERR) . 264690-1 . 4577 1. 239
3RD MOMENT = 74. 7903 1317. 46 2209. 23
(STD ERR) . 1913 13. 45 144. 7
4TH MOMENT = 352. 826 27381. 3 156815,
{STD ERR) 1. 313 480. 1 . 22208%
STH MOMENT = 1759. 49 4&83733. . 16480208
(STD ERR) 9. 102 . 19958 . 36217
6TH MOMENT = o254, 11 . 198361€8 . 21571610
(STD ERR) &3. 08 . 2199@6 . 6087e9
KNOWN MOMENTS
N s A
1TH MOMENT = 4, 00000 6. 79264 3. 39632
2TH MOMENT = 1. 917% unknown 36. 7235




TABLE 4. 7c
ANISOTROPIC CASE SAPLE 8126 100000
€(2.4,4,1,1,0,7/3) PROCESSING RATE  3708/WIN
THE 23 LARGEST POLYGONS (IN AREA)
1 =ISOPERIMETRIC RATIO
RANK N s A 1

1 7. 000 54. 63 178. 4 1.331

2 7. 000 34. 21 175.7 1.331

3 3. 000 57. 40 174.8 1. 300

4 7. 000 49.73 163.8 1. 202

9 9. 000 S51. 21 160. 0 1. 304

6 9. 000 04, 74 143.2 1. 677

z 7 9. 000 51. 48 142.3 1. 482
8 7. 000 45. 37 140. 4 1. 167

9 7. 000 51. 30 139. 4 1.514
10 6. 000 44. 86 129. 6 1. 234
11 7. 000 44. 09 124. 8 1. 239
12 6. 000 41.83 116. 1 1.199
13 7. 000 42.93 113.9 1.288
14 6. 000 44 81 113.7 1. 406
19 8. 000 41. 50 111.7 1. 227
16 6. 000 49. 77 110.8 1.780
17 7. 000 45. 09 110. 1 1. 469
18 3. 000 45. 48 106. 1 1.951
19 7. 000 42. 53 108. 1 1.370
20 7. 000 43. 22 101. 8 1. 460
21 4. 000 4152 101.3 1. 351
22 7.000  44.36 101. 4 1. 345
23 3.000  46.87 99. 82 1.751
24 6. 000 41. 51 97.77 1. 403
23 3. 000 45. 86 96. 44 1.733
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4.5.3. Anisotropic Cases Induced by Qn.

Tables 4.8a through 4.10c present the simulation results for
the anisotropic cases induced by the three discrete uniform distribu-
tions in QD with atoms at 5, 10 and 20 points respectively. The
functions A(0) fur each of these distributions are obtained from
(3.43).

As in the previous anisotropic simulations, the purpose here was
exploratory so that sample sizes were also kept to 100,000, Simula-~
tion rates were still high, between 8275 and 6787 polygons per minute.
Unfortunately, these cases were affected, though not so severely, by
the same numerical problems discussed in the last subsection. Nonethe-~
less, the general tendency for these cases to progressively approximate
the isotropic case is readily apparent as expected. A deeper investiga-
tion into this convergence may well provide the key to obtaining the

elusive analytic distributions of N, S, and A in the isotropic case.
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TABLE 4. 8a

SAMPLE BIZE
PROCESSING RATE

ANISOTROPIC CASE
S POINT DISCRETE UNIFORM

SAMPLE PERCENTILES

100000
8273/MIN

PROB(N = n)
n= 3 4 S 6 7
. 3124 . 4434 . 1876 . 4817@-1 . 7590@-2
n= 8 9 10 11 12
. 8500@-3 . 4000@-4 . 0000 . 0000 . 0000
¢ O POLYQGONS WITH N > 12)
PROB(8 < )
s= . 1000 . 2500 . 5000 . 73900 1. 000
. 8990@-2 .2353e-1 .4897€¢-1 .7498@-1 . 1009
s= 1. 500 2. 500 3. 7%0 3. 000 6. 250
. 1926 . 29393 . 3772 . 4873 . 9820
s= 7.3500 8. 750 10. 00 12. 50 13.00
. 4636 . 7316 . 7873 . B&97 . 9219
s= 17.350 20. 00 235. 00 30. 00 350. 00
. 9540 . 9735 . 9907 . 9971 1. 000

( 1 POLYCGONS WITH 8 > %0)

PROB(A < &)
a= _ 35000@-2 .1000€-1 .Q23%00€-1 .35000@-1 .1000
. 3606@2-1 . 952%8€-1 .8511e-1 . 1214 . 1739
a= | 23500 . 3000 . 7500 1. 000 1. 300
. 2714 . 3731 . 4436 . 4976 . 97681
a= 2 500 9. 000 7. %00 10. 00 12. 30
. 6824 . 9189 . 8808 . 9168 . 9406
a= 195 00 20. 00 30. 00 $0. 00 100.0
. 9961 . 9740 . 9891 . 9976 . 9999

( 12 POLYQONS WITH A > 100)
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TABLE 4.68b

ANISOTROPIC CASE SAMPLE SIZE
S POINT DISCRETE UNIFORM PROCESSING RATE

SAMPLE MOMENTS

N 8
18T MOMENT = 3. 99792 6. 30949
(STD ERR) . 2785%@-2 . 171601
2ND MOMENT = 16. 7589 71.80886
(STD ERR) . 244101 . 3951
3RD MOMENT = 73. 7311 1088. 00
(8TD ERR) . 1710 10. 64
4TH MOMENT = 340. 442 20764. 2
(STD ERR) 1.13¢6 340. 1
STH MOMENT = 1648. 46 474312,
(STD ERR) 7.9%54 . 1239€3
6TH MOMENT = 8359. 11 . 12504468
(STD ERR) 51. 30 . 494586

KNOWN MOMENTS
N 8
1TH MOMENT = 4. 00000 6. 49839

2TH MOMENT = 17. 1038 unknown

A

3. 26471
. 2010@-1

91. 0454
. 9927

1774. 38
88. 86

101147,
. 1090@3

. 79976707
. 1955e7

. 7928099
. 2373e9

A
3. 24920

S3. 8823

100000
8273/MIN




ANISOTROPIC CASE

RANK

VONOCFL2LON-

3 POINT DISCRETE UNIFORM

TABLE 4. 8¢

SAMPLE 81ZE

! THE 29 LARGEST POLYOONS (IN AREA)

1 =ISOPERIMETRIC RATIO

N 8 A
9. 000 48. 44 169. 2
7. 000 51.31 143. 6
7. 000 44. 56 129.9
&. Q00 43. 346 118. 6
6. 000 43. 22 116. 4
7. 000 44. 59 110. 9
é. 000 41. 82 110.1
S. 000 49. 12 106. 3
7. 000 43. 43 103.0
&. 000 41. 97 104.8
&. 000 44. 99 103.3
6. 000 39. 67 103. 2
3. 000 39. 0% 97.7%
7. 000 39. 52 96. 89
S. 000 39. o6 94. 47
8. 000 38. 32 91. 76
6. 000 38. 39 91. 24
7. 000 37.01 91.18
6. 000 38. 87 90. 52
8. 000 36. 84 89. 98
&. 000 41. 81 8e. 16
7. 000 37. 10 B8. 04
8. 000 3b6. 72 87. 88
9. 000 39. 16 87. 24
9. 000 38. 03 86. 30
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PROCEGSING RATE

. 131

. 216
. 261
. 277

. 925
. 431
. 312

. 213
. 241

. 287
. 274
. 296
. 199

. 978
. 244
. 221
. 399
. 333

100000
82T7I/MIN




TABLE 4. %a

ANISOTROPIC CASE SAMPLE SIZE 100000
10 POINT DISCRETE UNIFORM PROCESSING RATE 7142/MIN

SAMPLE PERCENTILES

PROB(N = n) |
n= 3 4 5 6 7 .
. 3462 . 3977 . 1861 . S6140-1 . 1194@~1 o
- ) 9 10 11 12 '
. 16408~2 . 19008-3 .3000€~4 .0000 . 0000
( O POLYGONS WITH N > 12)
PROB(S < )
s= .1000 . 2300 . 8000 . 7500 1. 000
.1079e-1 .2701@-1 .$540e-1 .8201e-1 .1098
s= 1.500 2. 300 3. 7%0 5. 000 6. 250
. 1644 . 2722 . 3945 . 5035 . %988
s= 7.%00 8. 750 10. 00 12. 50 15. 00
. 6776 7432 . 7972 . 8742 . 9247 |
s= 17.90 20. 00 2%. 00 30. 00 0. 00 i
. 9588 . 9743 . 9918 . 9973 1. 000

( O POLYGONS WITH 8 > 50)

PROB(A < a)
a= .35000@-2 .1000@-1 .23500€-1 .S50008~1 .1000
 42140-1 . 9997@~1 .9442@-1 . 1334 . 1870
a= 2900 . 5000 . 7500 1. 000 1. 300
. 2871 . 3881 . 4970 . 9101 . 9911

) a= 2.500 s. 000 7. 500 10. 00 12. 50 1
; . 6938 . 8214 . 8838 . 9188 . 9408
| a= 15.00 20. 00 30. 00 80. 00 100. 0
. 9945 . 9748 . 9900 . 9976 . 9999

( 15 POLYGONS WITH A > 100)
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ANISOTROPIC CASE

TABLE 4. 9b

10 POINT DISCRETE UNIFORM

18T MOMENT
(8TD ERR)

2ND MOMENT
{8TD ERR)

3RD MOMENT
(STD ERR)

4TH MOMENT
(STD ERR)

STH MOMENT
(8TD ERR)

6TH MOMENT
(STD ERR)

1TH MOMENT

2TH MOMENT

SAMPLE SIZE 100000
PROCESSING RATE 7142/MIN

SAMPLE MOMENTS

N

3. 99568
. 2994@-2

16. 8619
. 267%@-1

73. 2963
. 1928

398. 871
1. 327

1778. 18
9. 269

9374. 35
&6, 99

6. 33136
. 170481

69. 1134
. 3867

1040. 33
10. 34

19730. 8
330. 9

448133.
. 1206€5

. 11772408
. 4808864

KNOWN MOMENTS

N
4. 00000

16. 9798

110

8
6. 339538

unknown

A

3. 16982
. 1981@-1

49. 2739
. 9910

1723. 58
88. 74

100630,
. 1027@5

. 81016387
. 13307

. 79400109
. 1830@?

A
3. 16769

49. 9284




TABLE 4. 9¢

ANISOTROPIC CASE SAMPLE SIZE 100000
10 POINT DISCRETE UNIFORM PROCESSING RATE  7142/MIN

THE 29 LARGEST POLYGONS (IN AREA)
1 =ISOPERIMETRIC RATIO

N A

;

000 .

000 . i34.

000 . 134,
130.
124,
119.
119,
114,
111.
108.
109.
104,
104.
102.
100.
98.
96.
99.
94. °
94.
94.
*2.
91.
91.
90.
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TABLE 4. 10a

ANISOTROPIC CASE
20 POINT DISBCRETE UNIFORM

SAMPLE PERCENTILES

PROB(N = n)
n= 3 4
. 3%26 . 3863
n= 8 9

.1970@-2 . 3100@-3

SAMPLE SIZE

PROCESBSING RATE

)
. 1879

10
. 0000

-}
. 977%e-1

i1
. 0000

( O POLYOONS WITH N > 12}

PROB(S < s)
s= 1000 . 2500
. 119%@-1 . 2826e~1
s= 1. 500 2. 300
. 1684 . 2769
s= 7.%00 8.73%0
. 6804 . 7431
s= 17.930 20. 00
. 9969 . 97%2

. 3000
. 3704&-1

3.7%0
. 39688

10. 00
. 7989

23.00
. 9917

. 7%00
. 843401

3. 000
. 3070

12. 50
. 8738

30. 00
. 9974

( 1 POLYGONS WITH 8 > 350)

PROB(A < a)
a=  3000@-2 .1000@-1
.4417@-1 . 63091
a= | 2%00 . 3000
. 2926 . 3931
a= 2 300 3. 000
. 6960 . 8228
a= 195 00 20. 00
. 9977 . 9739

. 29%00@~1
. 9813¢~1

. 7900
. 4617

7. 500
. 8840

- 30, 00
. 9900

§

. 5000@-1
. 1368

1. 000
. 9149

10. 00
. 9200

80. 00
. 9978

( 16 POLYQONS WITH A > 100)

112

7

. 131601

12
. 0000

1. 000
. 1127

6. 250
. 6038

15. 00
. 9253

90. 00
1. 000

. 1000
. 1918

1. 900
. 99412

12. 50
. 9420

100.0

&787 /MIN
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TABLE 4. 10b

ANISOTROPIC CASE SAMPLE SIZE 100000
20 POINT DISCRETE UNIFORM PROCESSING RATE &787/MIN
SAMPLE MOMENTS
N 8 A

18T MOMENT = 3. 99967 6. 28806 3. 13509

(STD ERR) . 304680-2 .1701e-1 . 1962@-1
2ND MOMENT = 16. 9266 &68. 4676 48. 3149

(STD ERR) . 2737¢-1 . 38%4 1. 008
3RD MOMENT = 73. 9519 1029. 46 14696. 74

(STD ERR) . 1982 10. 36 102. 4
4TH MOMENT = 361. 429 193540. 3 103363.

(STD ERR) 1.377 336. 6 . 1457@S
STH MOMENT = 1821. 48 445%572. . 9219135e7

(STD ERR) 9. 6469 . 1262e% . 2397e7
6TH MOMENT = 9698. 74 . 1180135e8 . 103159@10

(8TD ERR) &9. 95 . 321446 . 41989

KNOWN MOMENTS
N S A

1TH MOMENT = 4. 00000 6. 29614 3. 14807
2TH MOMENT = 16. 9450 unknown 49. 0064
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TABLE 4. 10c

ANISOTROPIC CASE SAMPLE SIZE 100000
20 POINT DISCRETE UNIFORM PROCESSING RATE  6787/MIN

THE 2% LAROGEST POLYOGONS (IN AREA)
I =ISOPERIMETRIC RATIO

RANK N 8 A I
1 8. 000 352. 38 184. 9 1. 181
2 8. 000 44, 19 137. 1 1. 134
3 6. 000 46. 45 134. 8 1. 274
4 7. 000 49. 20 132. 6 1. 452
] 8. 000 4. 14 128. 3 1. 264
6 8. 000 44. 46 115. 6 1. 361
7 6. 000 41. 946 115. 2 1. 216
8 7. 000 48. 73 114. 9 1. 6435
9 9. 000 42. 17 112.3 1. 260
10 8. 000 46. 31 109.9 1. 953
11 6. 000 45. 688 107.8 1. 3954
12 7. 000 47. 26 107.2 1. 658
13 6. 000 39. 88 104. 2 1. 214
14 6. 000 44, 18 103. 2 1. 909
19 6. 000 42. 06 101. 9 1.387
16 7. 000 40. 03 101.3 1. 258
17 7. 000 39. 20 94. 88 1. 294
18 3. 000 41 28 94. 79 1. 431
19 &. 000 44. 09 2. &9 1. 6469
20 6. 000 36. 90 92. 49 1. 172
21 6. 000 39. 63 91. 40 1. 367
22 6. 000 38. 79 90. 37 1. 32%
23 &. 000 38.71 90. 06 1. 324
24 7. 000 37.73 8%9. 77 1. 262
23 8. 000 40. 13 88. 71 1. 444
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APPENDIX

A.l1. Characterizations of the Linear Poisson Process of (Constant)
Intensity T (1ppT).

A realization of a linear point process is a set of points on

R. It is well known that any of the following conditions is suffi-

cient to completely characterize this process as an LppT.

(A.1) (Counting Specification). Let N be a nonnegative integer-
valued random Borel measure on R. Then for k arbitrary
disjoint Borel sets Al,...,Ak, k=1,2,,.., the random vari-
ables N(Al),...,N(Ak) have independent Poisson distributions
with means m(Al),..., m(%), where m is Lebesgue measure.
(Note that it is sufficient to specify this property for

intervals Apseee ,Ak) .

(A.2) (interval Specification), If O 1is an arbitrary time origin
and the process points are labelled according to the defini-
tion ... f_T_Z iT_l 0 1 2
vals T_l—T_Z, TO-T_l, -To, Tl, T2—T1,... are a sequence of

<T,<0<T, <T, <..., then the inter-

iid exponentially distributed random variables with parameter

T.

(A.3) (Local Intensity Specification). As in (A.1) let N be a
nonnegative integer-valued random Borel measure on R. Let
{
| ! #(t) denote the history of the processes at time t. Then as
n
f

&> o, \
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P{N(t,t+8) = 1|§(t)} = T8 + 0(8)

and

P{N(t,t+8) > L|y(t)} = o(d) .

(Note that the second condition here virtually excludes the

possibility of multiple occurrences.)

There are several other known ways of characterizing a fpp7.

For a 1ist of these, together with references, see Cox and Isham (1980).
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A.2. An Integral Formula for E[Aﬁ]

We here derive an integral formula for the fourth moment of A
in isotropic ™. We proceed by exact .analogy with the derivation of
E[AZI in Coudsmit (1945) and the generalization for deriving E[A3]
in Solomon (1978). The basic idea is to derive two expressions for
the probability that four random points in a large area D 1lie inside

the same polygon. We shall denote this probability by Pk' The two

expressions are then equated, the area D+, and our formula is obtained.
The first expression for P, 1is obtained as follows. Let h(o)

be the probability density of A, Let M be the numbe: of polygons in

D. Then the probability that a random point in D 1lies inside a poly-

gon of area between O and O + do 1is approximately
oMh(o)do/D .

The probability that three more random points lie inside this same H

polygon is (U/D)3. Thus we obtain

M 4 M 4
(A.4) P, = ___J“ 0 h(g)do = —~ E[A"] .
4 DA 0 D4

The gecond expression is obtafired by averaging over all positions
of four random points, the probability that no line in £ passes through
the convex hull, denoted by C, of these four points. This is equivalent
to their lying in the same polygon. !

We denote the four points by X1s Xys X3, and X, . Without loss

of generality, we orient the horizontal axis so that xy is at the
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origin and x, lies along the axis in the positive direction. Let

r, = |x

. 1 - xll, 1=1,2,3. Let 6, be the angle between r, and

r, and 62 the angle between r and Ty. See Figure A.l.

%,

Figure A.1

We write r = (rl, Ly, T3 91, 92) and let p(r) be the peri-
meter of C. We have by an easy generalization of Theorem 1.2.4 that

the probability that no line of £ crosses C is

(a.5) TR /T

Notice that when the line segments joining the four points Xy, X,
X3, X, form a reentrant quadrilateral, C is a triangle. Othervise,

C 4is a convex quadrilateral.

In texms of differentials, the probability that a particular

orientation lies between r and r + dg is
29, £, T dr/D3
1 %2 "3 . *

the ratio of the differential volume element to the total volume.

Combining this with (A.5) yields
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(A.6) P, - W(E/D> + o(1)

where
(A.7) w(E) = 2 ”m RO/ Ty Fp Ty dr
E
and

E={r: 0<r, <= 1=1,2,3 and 0<6, <2x, J =1,2}

i b )

is the set of all positions of the four points in the plane. The term
o(l) + 0 as D+ in (A.6) accounts for the part of E not included
in D. That this is the correct order term follows by noting that
p(E) > Ty i=1,2,3.
Equating (A.4) and (A.6) we have as D=
(A.8) E(A*] = 1in 2 u(E)
D

= 5 u(E)
T

since 1lim D/M = E[A] = ﬂlrz. (See Solomon (1978)).
Do
We now proceed to reduce E by symmetry arguments. First

nE) = 3 uE
vwhere

31'30{£=°_<_°1i92£2"}~

Next observe that the integration in (A.7) is the same for
regions of Bl 4where Xys Xg5 X, all lie in the same half-plane.

Hence,
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r—

u(Ez) = W(E,) = u(E,)

where
E,~E N{r: 0290, <0, <7
E;=E 0 {r: m<8 <8, <2}
E,=E N {r: 0<04r <9, c2m .
Finally let
ES-Eln{E:o<el<1r<ez<61-ﬂr52u}
so that

El - Ez U E3 u E6 U Bs .

Combining the above we have

(A.9) U(E) = 6u(E,) + 2U(ES) .

We now proceed to express p(E) explicitly on the sets E, and

Es; Define

T
(A.10) . h(x) = 1 ]

¥,~xr, cos O
13 2
cos 01 + sin 91 (_—EnT—)

h(r) 1s the distance along the line coinsident with Ty from xy

to the line connecting X, and X,
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E, = E, N {r: r, < h(r)}

E,=E, N x: r, > h(r)} .

Notice that r € Eg implies C 41s a triangleand r € E7 implies C
is a quadrilateral.

For notational convenience, write the distance ix“_l - xj +1| as

d(ri,rj) - (ri + rg - 2r:|‘rj cos aij)llz

G2 = 85 015 = 8, ayy = 8,-8;

Then

r, + T, + d(rl,r

o

837.

3) on

[, ]

(a.11)  p(r) =
1 + T, + d(rl,rz) + d(tz,r3) on

[, ]

Also since r € Es implies C 1is a i:rnngle we have

(A.12)  p(x) = d(ry,r,) +d(r,,r,y) +4d(x;,r,) on rek.

Combining this reduction with (A.8) and (A.9) we obtain

(A.13) EIA‘] - :';— [6u(Ey) + 6u(E;) + 2u(E,)]
where :
u(Bi) - 2n I”” e'rp('."), v r, r, Ty dr |
E
and
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‘36-‘{5: 05r1<°.01r2_<_h(5).01r3<-,

0<86, <6, <}

Bolei02r <= hx) <y <o, 02, <,

0<6, <6, <7}

Bs-{£:0_<_t1<°°.1-1,2,3 and

0<8 <¥<bh, <O +r<2n).

Writing out (A.13) more explicitly we have the integral formula

0 T
2 2 h(r) == (ry+r 4d(x,,r,))
(A.14) z[A"l-ﬂ‘i- {3FI rr(j ~T e ¥ TTITTLYS r,dr,
T 0olJo JoJo Vo

T
~X (r 4r 4(r, ,r.)H(r.,r.))
+r e T 13TLM2 23 r,dr, Jr v dr dr 40 do,
h(r)

+{]21r rl rrJave-%(d(rl,r2)+d(r2,r3)+d(r1,r3))
T 8,-t ‘07070

2

£ T, 3drldrzdt3d0 lde 2}

where h(s) is defined in (A.10).
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A.3. A Theorem on the Richness of Qc.

Theorem. Qc defined in (3,31) is dense in the class § of con-
tinuous probability densities on {0, ].

Proof. Let f ¢ 8 and pick € > 0. f 1s uniformly continuous

so 3 8§>0 »

€
(A.15) l£ce)) - £¢8,)| < 1f [o,-6,] <25.
Let M = max £(0). Then :ino 2 V6,
048 m
0 dw €
(A.16) I [sin “(8-w) |o— > 1 - =
8-6 KR —

0
(see (3.33) for definition of Km)°
Combining (A.15) and (A.16), we have uniformly in ©

v n
(A.17) ” £(w) |sin 0(6-w) ]?‘19. - f(e)l
0 n

' w m
! < Io [£(w)-£¢8) | [s1n °(6-w) | ii“"—

B
' € € € €
<z‘(1-m) + M .ZE(-Z_.
Def ine
» R _ 1w "0 1m
h(8) == ] £6) [ein "(6 - D
Io i=1
and
n )
g () - —2 + 1 tAY fatn %0 - i),
L gm1 n
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We can choose N large enough so that V 6

" n

(A.18) IhN(B) - ]0 £(w) |s1n O(8-w) i‘-’i"-) ‘45
»
0

by direct Riemann approximation, and
(A.19) [ROES WOY <§

because

N T

3 Zf(jnl) +[ £(6) d6 = 1 ,
=1 0

Combining (A.17), (A.18), and (A.i9) we have V 6

Igu(e) -£(0)] <.

Cc
y(® = 6g,ma,0) (D €67,

where n=K and for i=1,,.,,N, m, = m,, a, = —it;—'-, and
£dh
8 B ——————
i .
) £dD
i=1
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A.4. Splitting Probabilities and the Distribution of N.

Consider a random secant through an N-sided polygon in isotropic
P*. That 1s, let the secant coincide with a line whose coordinates
(P,0) are distrituted proportiomally to dpd6 over the set of lines
hitting the polygon. This secant ‘splits’ the polygon into left and
right polygons which we define as lying to the left and right respec-
tively of the lower intersection of the secant with the polygon, see

Figure A.2.

left polygon -~ SECANT

right polygon

Figure A.2

Define the left splitting probability p;d, vhere 1 = 3,4,..., and
j=3,...,1#¥1, to be the probablity that a random secant through a
random i-sided polygon in & yields a j~sided left polygon.

The following system of equations expresses the interrelation
between the distribution of N and the splitting probabilities.
Knowledge of eithar set of probabilities should enable us to solve
this system for the other.

(A.20) M=) = ] (1-2) Mty ., m=3,4,... .
iwp~1
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We shall outline a derivation of (A20) which is based on the
invariance of the distribution of N under changes in the intemsity
T of the Poisson line process. Consider a random secant through
the portion of pP* contained in a large disc of radius q. As in
the proof of Theorem 1.2.4 it is easily shown that the probability
! that this secant hits a polygon with perimeter s 1is proportional
to s. Define llq to be the probability demsity that this secant

pi,s
hits an i-sided polygon with perimeter s. Then,

H
q - =
Py g™ qu{s s,N= 1}

where rq{s- s,N=1} 1s the joint density of S and N in the disc.
Now let q + © go that the random secant will correspond to a new

line resulting from an infintesimal increase in the intensity T

H
q H
i,s * Pi.l'

density of i-sided polygons with perimeter s along the new line.

of the Poisson line process. Then p the probability

Furthermore, since qus- s,N= 1} + P{S= g ,Nw= 1} the ergodic density,
we have

(A.21) pl: s =8 dp{S=g,N=1} .

bt
Define p: to be the probaiblity density of i-sided polygons along
the nev line. Integrating (A.21) we obtain

v': « /s dp{§=q,N= 1}
« /s dp{S=s|N=1) * P{R= 1)
« E{8|N=1} * P{N=1]} .
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But from Section 3.5 we have !{SIN- 1} « (4-2) and E[N) = 4, so
that

R 1 . P{N=
Finally, this new line creates two polygons for every one it hits.

However, because of the invariance of the distribution of N under

the addition of one more line, the distribution of N of the new polygons

must be this same distribution. By the symmetry between left and right

new polygons, we have for m = 3,4,...
P{N=m} = 2 »

- (1-2) P{N= 1}p* .
1-:{-1 in

We remark that a little more simplification of (A.20) is possible because

* ®
Pip ™ p:l.(i-i-lo-m) by symmetry.




(2]

(3]

FOOTNOTES

The agreement of some of his results with those of Goudsait

(vhen suitably normalized) suggests that Goudsmit had in mind

this very model.

The in-circle of a convex polygom is the largest circle it
contains. While it may not be unique, its diameter is. We

shall not investigate this ch racteristic further as it seems

to be less important than N, S, or A.

The particular paper, Miles (1973), came to the attention of

the author after the bulk of the present work had been carried
out. His stochastic constructions seem not to be of the sequen-
tial nature of the construction developed here, although both
processes begin with a similar step. Apparently, his construc-
tions are not very efficient for simulation studies as he chose

a different method in his later Monte Carlo study with Crain.
Furthermore, as he does not elaborate on the details of his con-
struction, it is hard to see the mathematical potential, although
he does allude to some recursive integral equations for the dis-
tributions of polygon characteristics. Finally, his constructions
are given for the isotropic case vwhereas the sequential comstruc-
tion here is developed in the general translation invariant con-
text., The essential overlap of Miled contribution with the
present paper is that both constructions yield sets of polygons
squivalent to an independent and identically distributed sample of
polygons from a Poisson field of lines.




(4] Some researchers in the line processes consider directed lines and use
thig parametrization with 0 € [0, 2m). We will be concerned
only with undirected lines.

[S] C 1is endowed with the ordinary Puclidean topology.

s e e s

f6] Some researchers (Davidson (1974)) consider the more general doubly
stochastic Poisson line process. The equivalent point process
on ( then has the same distributional form as (1.5) with m
replaced by a random Borel measure A. We shall not consider
this generalization here.

(7] It actually takes a little doing to establish this from (1.5).
A possible derivation establishes a characterization like (A.3)

for multivariate Poisson processes from which a joint conditional

density can be derived. we do not carry out the details as this
seems to be a well known property.

(8] We use the term density throughout this work to refer to the
differential element of the measure referred to. For example,
if u 1is a measure, then we refer to du as the density where
H(A) = IA diu. Note that contrary to common usage, we include
the differential element of the carrier measure.

[9] For isotropic #* the curling process can be modified to select
a sdmple from a population equivalent up to translation and
rotation.

[10] We condition on the open interval (un-l' en-l) here. When the
distribution G of © 1is continuous, it trivially does not

matter. However, this restriction is essential if G has an




(11]

(12]

(13]

[14]

[15)

atom at either %1 ©°F 6 .. Any such value would violate the

n-1
property that the Poisson point process on ( has no multiple

points (a property similar to (A.3)).

See formula (5.19) in Miles (1973). Miles uses a different para-

metrization of the angles, but his side lengths L1 are the same

as our Zi'

For example, a natural candidate would be the circular normal
distribution where the density is proportional to exp{-K cos 20},
see Mardia (1972). The reader can verify that a closed form
expression for F in (3.29) is unobtainable.

The Monte Carlo study of Crain and Miles (1976) exploits informa-

tion from one of these aggregates, the perimeter weighted + polygons,

(see also footnote [15]}).

Result communicated to H. Solomon in unpublished memo. See
Solomon (1978), p. 54.

Actually Crain and Miles consider two types of polygoms,
%*polygons which are the same as ours, and +polygons which

rrve the unions of pairs of adjacent polygons. They simulated
100,495 * polygons and 95,485 +polygons in 45 and 21 sample
discs, respectively. The distributions of <+polygon charac~-
teristics correspond to a perimeter weighting of those * polygons.
Table 4.2 presents some estimates of the distribution of N based

on + polygons, (see also footnote [17]). In particular, extreme

values of N, S, and A are more likely in the 4+ polygon popula-

tion so that more precigse estimates of the tails are available.
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[16] The computer operators at the IMSSS facility, Stanford, Ca.,
estimate that our machine, the PDP10/KI is about twice as

' fast as the IBM 360/50 used by Crain and Miles. They added
however that the comparison is difficult.

[17] We present in this table the different estimates that Crain
and Miles obtain for the distribution of N. *STD and +STD
estimates are ordinary sample averages using *polygons and

+polygous respectively, (see footnote [15]). *WTD and +WTD

are the corresponding weighted estimates compensating for the
edge effects. QRF and CRF refer to quadratic and cubic
ratio fits obtained by fitting polynomial expressions for
] ratios of probabilities to the data and known values. Crain
and Miles present histograms rather than percentile estimates
for S and A, together with various types of moment estimates.
{18] We programmed the Monte Carlo simulations in the programming
language SAIL (Stanford Artificial Intelligence Laboratory).
This language includes as a standard subroutine a pseudo-random
number generator called RAN.

[19] Private communication to H. Solomon.

[20] Our programming language SAIL is basically an algorithmically
oriented language for programming ease. The variables used hold
at most eight significant digits rendering it somewhat inaccurate
for sophisticated numerical work. Apparently a new extended
precision version of SAIL will soon be available. Alternatively,

the extended precision capability of PORTRAN makes it an ideal

language for this type of simulation. The author plans to carry

PP TS
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out more extensive simulations of these sensitive anisotropic

cases with a more numerically precise programming language

in the future.

132




REFERENCES

Baddeley, A. (1977), "A Fourth Note on Recent Research in Geometrical
Probability," Adv. Appl. Prob. 9, 824-860.

Butler, J. W. (1954), "Machine Sampling f-om Given Probability Dis-
tributions,” in Meyer, H. A. (ed.), Symposium on Monte Carlo
Methods. Wiley, N.Y.

Cowan, R. (1978), "The Use of Ergodic Theorems in Random Geometry,"
Suppl. Adv. Appl. Prob. 10, 47-57,

Cox, D. R. and Isham, V. (1980), Point Processes, Chapman and Hall,
London.

Crain, I. K. and Miles, R. E. (1976), "Monte Carlo Estimates of the
Distributions of the Random Polygons Determined by Random Lines
in a Plane," J. Stat. Comp. 4, 293-325.

Crofton, M. W. (1885), "Probability," Encyclopedia Britannica, 9th ed.,
Vol. 19, 768-788.

Davidson, R. (1974), "Constructing of Line Processes: Second Order
Properties,' in Harding and Kendall (eds.), Stochastic Geometry,
Wiley, N.Y., 55-75.

Dwight, H. B. (1961), Tables of Integrals and Other Mathematical Data,
Macmillan, N.Y.

Goudsmit, S. A. (1945), "Random Distribution of Lines in a Plane,"
Rev. Mod. Phys. 17, 321-322,

Hammersley, J. M. and Handscomb, D. C. (1964), Monte Carlo Methods,
Metheun, London.

Harding, E. F. and Kendall, D. G. (1974), Stochastic Geometry, Wiley,
N.Y.

Little, D. V. (1974), "A Third Note on Recent Research in Geometrical

Probability," Adv. Appl. Prob. 6, 103-130.

Mardia, K. V., (1972), Statistics of Directional Data, Academic Press,
N.Y.

Miles, R. E. (1964), "Random Polygons Determined by Random Lines in a
Plane," Proc. Nat. Acad. Sci. (USA), Part I 52, 901-907; Part II
52, 1157-1160.

Miles, R. E. (1971), "Poisson Flats in Euclidean Spaces. II," Adv.
Appl. Prob. 3, 1-43,

133




Miles, R. E. (1974), "On the Elimination of Edge Effects in Planar
Sampling,” in Harding and Kendall (eds.), Stochastic Geometry,
Wiley, N.Y., 227-247.

Miles, R. E. (1973), "The Various Aggregates of Random Polygons
Determined by Random Lines in a Plane,” Adv. Math. 10, 256-290.

Moran, P. A. P. (1966), "A Note on Recent Research in Geometrical
Probability," J. Appl. Prob. 3, 453-463.

Moran, P. A. P. (1969), "A Second Note on Recent Research in Geometri-

cal Probability," Adv. Appl. Prob. 1, 73-89,

Santalo, L. A. (1953), Introduction to Integral Geometry, Hermann,
Paris (Act. Sci. Indust. No. 1198).

Santalo, L. A. (1976), "Integral Geometry and Geometric Probability,"
Encyclopedia of Mathematics and Its Applications, Vol. 1,
Addison-Wesley, MA.

Solomon, H. and Wang, P. (1972), "Nonhomogeneous Poisson Fields of
Random Lines with Applications to Traffic Flow," Proc. Sixth
Berkeley Symp. Math. Statist. Prob. 3, 383-400.

Solomon, H. (1978), GCeometrical Probability, SIAM Publications (CBMS-
NSF 28), PA.

Solomon, H. and Stephens, M, A. (1980), "Approximations to Densities
in Geometrical Probabiligy," J. Appl. Prob. 17, 145-153.

Snyder, D. L. (1975), Random Point Processes, Wiley, N.Y.




UNCLASSIFIED
SECUNITY CLASSIFICATION OF THIS PAGE (When Date Entered)
REPORT DOCUMENTATION PAGE .mmm,'m
1. REPORT NUMBER EE;EV??EEEEEEE1EE7F'iiEﬁmEﬁ?f!ﬁ?iﬂi?ﬁﬁiili"""‘
320 D-411 9410
4. TITLE (and Subtitie) S. TYPE OF REPOAT & PEMOD COVERRD
SEQUENTIAL STOCHASTIC CONSTRUCTION OF TECHNI
RANDOM POLYGONS CAL REPORT
S. PERFOAMING ORG. REFPORT NUMBER
[7. AuTnoR(e) NUN
Edward Ian George NO0014-76-C-0475
¥ FERFORMING GROAMITATION NAWE AN ADOREES ““'f:':ﬁﬁiﬁE?E!ﬁ?iﬂEﬁiE?""r"
- Department of Statistics NR-042-267
Stanford University
Stanford, CA 94305
11, CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Office Of Naval Research |__June 10, 1982
Statistics & Probability Program Code &411sp "';g“"'°"‘“"
] +
uou.ll noc ING AGENCY NAME & ADDRESS(I! difforent frem Centreliing Olfice) | 15. SECURITY CLASS. (of this raporD)
UNCLASSIFIED
[Tia GECT ASFICATION/ GOWNGRADING |

ITS. OASTRIBUTION STATEMENT (of this Report)

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED.

17. DISTRIDUTION STATEMENT (of the sdatrest entered in Bleck 20, If different from Report)

19. SUPPLIMENTARY NOTES

19. KLY WORDS (Continue an reverse side If noscasary and identify by bleck mumber)
Poisson fields of lines; distributions of sides, parameter and area
of random polygons; isotropic and anisotropic cases.

20. ARSI RACT (Continue en reveras side if nocossary and idontily by block mumber)

PLEASE SEE REVERSE SIDE.

DD ,j5u'7 1473  toimion oF 1 vov a8 13 ossoLETE UNCLASSIFIED
$/N 0102- L% 214- 8601 SRCUNTY CLASFICATION OF THTS PAGE (When Dore Barere

|




UNCLASSIFIED

SECUMTY CLASSIFICATION OF THIS PAGE ("hen Date Entered)

#320

\
i

Ano-ogm‘ouo Poisson fields of lines divide the plane into non-
overlapping convex polygons. Of interest to researchers in geometrical
probability have been the distributions of characteristics of the poly-
gons induced by the distributions of the lines, especially N, the
nuaber of sides, S, the perimeter, and A, the area. A sequential
stochastic process is developed from which an independent and idemtically
distrituted sample of polygons can be extracted with a stopping time. It
is shown that the distribution of polygons so obtained is identical to
the distribution of polygons in the Poisson field. The stochastic process
is developed in full generality and can be applied to anisotropic cases
as well as the case of most intereat, the isotropic case. Useful families
of anisotropic distributions for this problem are defined.

The sequential stochastic process is used to derive gcﬁeral analytical
expressions for polygon distributions for the investigation of the unknowm
distributions of N, S and A. Methods are also developed which provide
the basis for very fast computer simulation of the process. A Monte Carlo
study of the distributions of N, S, and A in various cases is presented.
In particular, a sample of 2,500,000 polygons in the isotropic case provides

the most precise results to date. ‘\
~

LI I R T

UNCLASSIFIED

IB2.0°% 2,225 2:CAT'CA IF S PAIE When Dava Bnrerad)







